Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Pharm Des ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38616754

ABSTRACT

BACKGROUND: Traditional Chinese medicine Scutellaria Baicalensis (SB), one of the clinical firstline heat-clearing drugs, has obvious symptomatic advantages for hepatic fibrosis with dampness-heat stasis as its syndrome. We aim to predict and validate the potential mechanism of Scutellaria baicalensis active ingredients against liver fibrosis more scientifically and effectively. METHODS: The underlying mechanism of Scutellaria baicalensis in inhibiting hepatic fibrosis was studied by applying network pharmacology, molecular docking and molecular dynamics simulation. Expression levels of markers in activated Hepatic Stellate Cells (HSC) after administration of three Scutellaria baicalensis extracts were determined by Western blot and Real-time PCR, respectively, in order to verify the anti-fibrosis effect of the active ingredients Results: There are 164 common targets of drugs and diseases screened and 115 signaling pathways obtained, which were mainly associated with protein phosphorylation, senescence and negative regulation of the apoptotic process. Western blot and Real-time PCR showed that Scutellaria baicalensis extracts could reduce the expression of HSC activation markers, and Oroxylin A had the strongest inhibitory effect on it. Molecular docking results showed that Oroxylin A had high binding activity to target proteins. Molecular dynamics simulation demonstrates promising stability of the Oroxylin A-AKT1 complex over the simulated MD time of 200 ns. CONCLUSION: Scutellaria baicalensis active ingredients may inhibit HSC proliferation, reduce the generation of pro-inflammatory factors and block the anti-inflammatory effect of inflammatory signal transduction by inducing HSC apoptosis and senescence, thus achieving the effect of anti-fibrosis.

2.
Nat Commun ; 8: 14659, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28337975

ABSTRACT

Mutations in the RYR1 gene cause severe myopathies. Mice with an I4895T mutation in the type 1 ryanodine receptor/Ca2+ release channel (RyR1) display muscle weakness and atrophy, but the underlying mechanisms are unclear. Here we show that the I4895T mutation in RyR1 decreases the amplitude of the sarcoplasmic reticulum (SR) Ca2+ transient, resting cytosolic Ca2+ levels, muscle triadin content and calsequestrin (CSQ) localization to the junctional SR, and increases endoplasmic reticulum (ER) stress/unfolded protein response (UPR) and mitochondrial ROS production. Treatment of mice carrying the I4895T mutation with a chemical chaperone, sodium 4-phenylbutyrate (4PBA), reduces ER stress/UPR and improves muscle function, but does not restore SR Ca2+ transients in I4895T fibres to wild type levels, suggesting that decreased SR Ca2+ release is not the major driver of the myopathy. These findings suggest that 4PBA, an FDA-approved drug, has potential as a therapeutic intervention for RyR1 myopathies that are associated with ER stress.


Subject(s)
Muscle, Skeletal/physiopathology , Mutation/genetics , Phenylbutyrates/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , Animals , Apoptosis/drug effects , Calcium/metabolism , Calcium Signaling/drug effects , Calsequestrin/metabolism , Carrier Proteins/metabolism , Endoplasmic Reticulum Stress/drug effects , Male , Mice, Inbred C57BL , Mice, Mutant Strains , Mitochondria/drug effects , Mitochondria/metabolism , Muscle Proteins/metabolism , Muscle, Skeletal/drug effects , Oxidative Stress/drug effects , Phenotype , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
3.
J Mol Graph Model ; 68: 57-67, 2016 07.
Article in English | MEDLINE | ID: mdl-27371933

ABSTRACT

Roscovitine derivatives are potent inhibitors of cyclin-dependent kinase 5 (CDK5), but they exhibit different activities, which has not been understood clearly up to now. On the other hand, the task of drug design is difficult because of the fuzzy binding mechanism. In this context, the methods of molecular docking, molecular dynamics (MD) simulation, and binding free energy analysis are applied to investigate and reveal the detailed binding mechanism of four roscovitine derivatives with CDK5. The electrostatic and van der Waals interactions of the four inhibitors with CDK5 are analyzed and discussed. The calculated binding free energies in terms of MM-PBSA method are consistent with experimental ranking of inhibitor effectiveness for the four inhibitors. The hydrogen bonds of the inhibitors with Cys83 and Lys33 can stabilize the inhibitors in binding sites. The van der Waals interactions, especially the pivotal contacts with Ile10 and Leu133 have larger contributions to the binding free energy and play critical roles in distinguishing the variant bioactivity of four inhibitors. In terms of binding mechanism of the four inhibitors with CDK5 and energy contribution of fragments of each inhibitor, two new CDK5 inhibitors are designed and have stronger inhibitory potency.


Subject(s)
Cyclin-Dependent Kinase 5/antagonists & inhibitors , Cyclin-Dependent Kinase 5/chemistry , Molecular Dynamics Simulation , Purines/pharmacology , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Docking Simulation , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Purines/chemistry , Roscovitine , Solvents/chemistry , Static Electricity , Thermodynamics , Time Factors
4.
Skelet Muscle ; 5: 4, 2015.
Article in English | MEDLINE | ID: mdl-25717360

ABSTRACT

BACKGROUND: Ca(2+) influx through CaV1.1 is not required for skeletal muscle excitation-contraction coupling, but whether Ca(2+) permeation through CaV1.1 during sustained muscle activity plays a functional role in mammalian skeletal muscle has not been assessed. METHODS: We generated a mouse with a Ca(2+) binding and/or permeation defect in the voltage-dependent Ca(2+) channel, CaV1.1, and used Ca(2+) imaging, western blotting, immunohistochemistry, proximity ligation assays, SUnSET analysis of protein synthesis, and Ca(2+) imaging techniques to define pathways modulated by Ca(2+) binding and/or permeation of CaV1.1. We also assessed fiber type distributions, cross-sectional area, and force frequency and fatigue in isolated muscles. RESULTS: Using mice with a pore mutation in CaV1.1 required for Ca(2+) binding and/or permeation (E1014K, EK), we demonstrate that CaV1.1 opening is coupled to CaMKII activation and refilling of sarcoplasmic reticulum Ca(2+) stores during sustained activity. Decreases in these Ca(2+)-dependent enzyme activities alter downstream signaling pathways (Ras/Erk/mTORC1) that lead to decreased muscle protein synthesis. The physiological consequences of the permeation and/or Ca(2+) binding defect in CaV1.1 are increased fatigue, decreased fiber size, and increased Type IIb fibers. CONCLUSIONS: While not essential for excitation-contraction coupling, Ca(2+) binding and/or permeation via the CaV1.1 pore plays an important modulatory role in muscle performance.

5.
J Mol Model ; 20(2): 2075, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24481594

ABSTRACT

We apply molecular docking, molecular dynamics (MD) simulation, and binding free energy calculation to investigate and reveal the binding mechanism between five xanthine inhibitors and DPP-4. The electrostatic and van der Waals interactions of the five inhibitors with DPP-4 are analyzed and discussed. The computed binding free energies using MM-PBSA method are in qualitatively agreement with experimental inhibitory potency of five inhibitors. The hydrogen bonds of inhibitors with Ser630 and Asp663 can stabilize the inhibitors in binding sites. The van der Waals interactions, especially the key contacts with His740, Asn710, Trp629, and Tyr666 have larger contributions to the binding free energy and play important roles in distinguishing the variant bioactivity of five inhibitors.


Subject(s)
Dipeptidyl Peptidase 4/chemistry , Molecular Dynamics Simulation , Xanthine/chemistry , Binding Sites , Dipeptidyl Peptidase 4/metabolism , Energy Metabolism , Humans , Molecular Docking Simulation , Xanthine/antagonists & inhibitors , Xanthine/metabolism
6.
Nat Med ; 18(2): 244-51, 2012 Jan 08.
Article in English | MEDLINE | ID: mdl-22231556

ABSTRACT

Mice with a knock-in mutation (Y524S) in the type I ryanodine receptor (Ryr1), a mutation analogous to the Y522S mutation that is associated with malignant hyperthermia in humans, die when exposed to short periods of temperature elevation (≥37 °C). We show here that treatment with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) prevents this heat-induced sudden death in this mouse model. The protection by AICAR is independent of AMP-activated protein kinase (AMPK) activation and results from a newly identified action of the compound on mutant Ryr1 to reduce Ca(2+) leak from the sarcoplasmic reticulum to the sarcoplasm. AICAR thus prevents Ca(2+)-dependent increases in the amount of both reactive oxygen species (ROS) and reactive nitrogen species (RNS) that act to further increase resting Ca(2+) concentrations. If unchecked, the temperature-driven increases in resting Ca(2+) concentrations and the amounts of ROS and RNS create an amplifying cycle that ultimately triggers sustained muscle contractions, rhabdomyolysis and death. Although antioxidants are effective in reducing this cycle in vitro, only AICAR prevents heat-induced death in vivo. Our findings suggest that AICAR is probably effective in prophylactic treatment of humans with enhanced susceptibility to exercise- and/or heat-induced sudden death associated with RYR1 mutations.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Heat Stress Disorders/prevention & control , Hot Temperature/adverse effects , Ribonucleotides/pharmacology , Ryanodine Receptor Calcium Release Channel/genetics , AMP-Activated Protein Kinases/physiology , Adenosine Triphosphate/metabolism , Aminoimidazole Carboxamide/pharmacology , Animals , Calcium/metabolism , Death, Sudden/prevention & control , Enzyme Activation , Heat Stress Disorders/genetics , Male , Mice , Mice, Mutant Strains , Mice, Transgenic , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Reactive Nitrogen Species/metabolism , Reactive Oxygen Species/metabolism , Ryanodine Receptor Calcium Release Channel/drug effects , Ryanodine Receptor Calcium Release Channel/physiology , Sarcoplasmic Reticulum/drug effects , Sarcoplasmic Reticulum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...