Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 383(6690): eabn3263, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38422184

ABSTRACT

Vocal production learning ("vocal learning") is a convergently evolved trait in vertebrates. To identify brain genomic elements associated with mammalian vocal learning, we integrated genomic, anatomical, and neurophysiological data from the Egyptian fruit bat (Rousettus aegyptiacus) with analyses of the genomes of 215 placental mammals. First, we identified a set of proteins evolving more slowly in vocal learners. Then, we discovered a vocal motor cortical region in the Egyptian fruit bat, an emergent vocal learner, and leveraged that knowledge to identify active cis-regulatory elements in the motor cortex of vocal learners. Machine learning methods applied to motor cortex open chromatin revealed 50 enhancers robustly associated with vocal learning whose activity tended to be lower in vocal learners. Our research implicates convergent losses of motor cortex regulatory elements in mammalian vocal learning evolution.


Subject(s)
Enhancer Elements, Genetic , Eutheria , Evolution, Molecular , Gene Expression Regulation , Motor Cortex , Motor Neurons , Proteins , Vocalization, Animal , Animals , Chiroptera/genetics , Chiroptera/physiology , Vocalization, Animal/physiology , Motor Cortex/cytology , Motor Cortex/physiology , Chromatin/metabolism , Motor Neurons/physiology , Larynx/physiology , Epigenesis, Genetic , Genome , Proteins/genetics , Proteins/metabolism , Amino Acid Sequence , Eutheria/genetics , Eutheria/physiology , Machine Learning
2.
Science ; 380(6643): eabn2253, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37104592

ABSTRACT

Conserved genomic sequences disrupted in humans may underlie uniquely human phenotypic traits. We identified and characterized 10,032 human-specific conserved deletions (hCONDELs). These short (average 2.56 base pairs) deletions are enriched for human brain functions across genetic, epigenomic, and transcriptomic datasets. Using massively parallel reporter assays in six cell types, we discovered 800 hCONDELs conferring significant differences in regulatory activity, half of which enhance rather than disrupt regulatory function. We highlight several hCONDELs with putative human-specific effects on brain development, including HDAC5, CPEB4, and PPP2CA. Reverting an hCONDEL to the ancestral sequence alters the expression of LOXL2 and developmental genes involved in myelination and synaptic function. Our data provide a rich resource to investigate the evolutionary mechanisms driving new traits in humans and other species.


Subject(s)
Brain , Evolution, Molecular , Gene Expression Regulation, Developmental , Sequence Deletion , Humans , Conserved Sequence/genetics , Genome , Genomics , RNA-Binding Proteins/genetics , Brain/growth & development
3.
Science ; 380(6643): eabn3943, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37104599

ABSTRACT

Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.


Subject(s)
Eutheria , Evolution, Molecular , Animals , Female , Humans , Conserved Sequence/genetics , Eutheria/genetics , Genome, Human
4.
Science ; 380(6643): eabn2937, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37104612

ABSTRACT

Thousands of genomic regions have been associated with heritable human diseases, but attempts to elucidate biological mechanisms are impeded by an inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function, agnostic to cell type or disease mechanism. Single-base phyloP scores from 240 mammals identified 3.3% of the human genome as significantly constrained and likely functional. We compared phyloP scores to genome annotation, association studies, copy-number variation, clinical genetics findings, and cancer data. Constrained positions are enriched for variants that explain common disease heritability more than other functional annotations. Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.


Subject(s)
Disease , Genetic Variation , Animals , Humans , Biological Evolution , Genome, Human , Genome-Wide Association Study , Genomics , Molecular Sequence Annotation , Polymorphism, Single Nucleotide , Disease/genetics
5.
bioRxiv ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36945512

ABSTRACT

Although thousands of genomic regions have been associated with heritable human diseases, attempts to elucidate biological mechanisms are impeded by a general inability to discern which genomic positions are functionally important. Evolutionary constraint is a powerful predictor of function that is agnostic to cell type or disease mechanism. Here, single base phyloP scores from the whole genome alignment of 240 placental mammals identified 3.5% of the human genome as significantly constrained, and likely functional. We compared these scores to large-scale genome annotation, genome-wide association studies (GWAS), copy number variation, clinical genetics findings, and cancer data sets. Evolutionarily constrained positions are enriched for variants explaining common disease heritability (more than any other functional annotation). Our results improve variant annotation but also highlight that the regulatory landscape of the human genome still needs to be further explored and linked to disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...