Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 932
Filter
1.
Cardiovasc Diabetol ; 23(1): 157, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715111

ABSTRACT

BACKGROUND: Sodium-glucose cotransporter 2 (SGLT2) and SGLT1 inhibitors may have additional beneficial metabolic effects on circulating metabolites beyond glucose regulation, which could contribute to a reduction in the burden of cerebral small vessel disease (CSVD). Accordingly, we used Mendelian Randomization (MR) to examine the role of circulating metabolites in mediating SGLT2 and SGLT1 inhibition in CSVD. METHODS: Genetic instruments for SGLT1/2 inhibition were identified as genetic variants, which were both associated with the expression of encoding genes of SGLT1/2 inhibitors and glycated hemoglobin A1c (HbA1c) level. A two-sample two-step MR was used to determine the causal effects of SGLT1/2 inhibition on CSVD manifestations and the mediating effects of 1400 circulating metabolites linking SGLT1/2 inhibition with CSVD manifestations. RESULTS: A lower risk of deep cerebral microbleeds (CMBs) and small vessel stroke (SVS) was linked to genetically predicted SGLT2 inhibition. Better white matter structure integrity was also achieved, as evidenced by decreased mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD), as well as lower deep (DWMH) and periventrivular white matter hyperintensity (PWMH) volume. Inhibiting SGLT2 could also lessen the incidence of severe enlarged perivascular spaces (EPVS) located at white matter, basal ganglia (BG) and hippocampus (HIP). SGLT1 inhibition could preserve white matter integrity, shown as decreased MD of white matter and DWMH volume. The effect of SGLT2 inhibition on SVS and MD of white matter through the concentration of 4-acetamidobutanoate and the cholesterol to oleoyl-linoleoyl-glycerol (18:1 to 18:2) ratio, with a mediated proportion of 30.3% and 35.5% of the total effect, respectively. CONCLUSIONS: SGLT2 and SGLT1 inhibition play protective roles in CSVD development. The SGLT2 inhibition could lower the risk of SVS and improve the integrity of white matter microstructure via modulating the level of 4-acetamidobutanoate and cholesterol metabolism. Further mechanistic and clinical studies research are needed to validate our findings.


Subject(s)
Biomarkers , Cerebral Small Vessel Diseases , Mendelian Randomization Analysis , Sodium-Glucose Transporter 1 , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 , Humans , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 1/metabolism , Cerebral Small Vessel Diseases/genetics , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/drug therapy , Cerebral Small Vessel Diseases/blood , Cerebral Small Vessel Diseases/metabolism , Risk Factors , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2/genetics , Biomarkers/blood , Risk Assessment , Glycated Hemoglobin/metabolism , Pharmacogenomic Variants , Treatment Outcome , Phenotype , Cerebral Hemorrhage/genetics , Cerebral Hemorrhage/chemically induced , Cerebral Hemorrhage/epidemiology , Protective Factors , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/epidemiology , Genetic Predisposition to Disease
2.
Orthop Surg ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747083

ABSTRACT

OBJECTIVE: The current investigation sought to utilize finite element analysis to replicate the biomechanical effects of different fixation methods, with the objective of establishing a theoretical framework for the optimal choice of modalities in managing Pauwels type III femoral neck fractures. METHODS: The Pauwels type III fracture configuration, characterized by angles of 70°, was simulated in conjunction with six distinct internal fixation methods, including cannulated compression screw (CCS), dynamic hip screw (DHS), DHS with de-rotational screw (DS), CCS with medial buttress plate (MBP), proximal femoral nail anti-rotation (PFNA), and femoral neck system (FNS). These models were developed and refined using Geomagic and SolidWorks software. Subsequently, finite element analysis was conducted utilizing Ansys software, incorporating axial loading, torsional loading, yield loading and cyclic loading. RESULTS: Under axial loading conditions, the peak stress values for internal fixation and the femur were found to be highest for CCS (454.4; 215.4 MPa) and CCS + MBP (797.2; 284.2 MPa), respectively. The corresponding maximum and minimum displacements for internal fixation were recorded as 6.65 mm for CCS and 6.44 mm for CCS + MBP. When subjected to torsional loading, the peak stress values for internal fixation were highest for CCS + MBP (153.6 MPa) and DHS + DS (72.8 MPa), while for the femur, the maximum and minimum peak stress values were observed for CCS + MBP (119.3 MPa) and FNS (17.6 MPa), respectively. Furthermore, the maximum and minimum displacements for internal fixation were measured as 0.249 mm for CCS + MBP and 0.205 mm for PFNA. Additionally, all six internal fixation models showed excellent performance in terms of yield load and fatigue life. CONCLUSION: CCS + MBP had the best initial mechanical stability in treatment for Pauwels type III fracture. However, the MBP was found to be more susceptible to shear stress, potentially increasing the risk of plate breakage. Furthermore, the DHS + DS exhibited superior biomechanical stability compared to CCS, DHS, and PFNA, thereby offering a more conducive environment for fracture healing. Additionally, it appeared that FNS represented a promising treatment strategy, warranting further validation in future studies.

3.
ACS Environ Au ; 4(3): 162-172, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765061

ABSTRACT

The highly excessive uptake of cadmium (Cd) by rice plants is well known, but the transfer pathway and mechanism of Cd in the paddy system remain poorly understood. Herein, pot experiments and field investigation were systematically carried out for the first time to assess the phytoavailability of Cd and fingerprint its transfer pathway in the paddy system under different treatments (slaked lime and biochar amendments), with the aid of a pioneering Cd isotopic technique. Results unveiled that no obvious differences were displayed in the δ114/110Cd of Ca(NO3)2-extractable and acid-soluble fractions among different treatments in pot experiments, while the δ114/110Cd of the water-soluble fraction varied considerably from -0.88 to -0.27%, similar to those observed in whole rice plant [Δ114/110Cdplant-water ≈ 0 (-0.06 to -0.03%)]. It indicates that the water-soluble fraction is likely the main source of phytoavailable Cd, which further contributes to its bioaccumulation in paddy systems. However, Δ114/110Cdplant-water found in field conditions (-0.39 ± 0.05%) was quite different from those observed in pot experiments, mostly owing to additional contribution derived from atmospheric deposition. All these findings demonstrate that the precise Cd isotopic compositions can provide robust and reliable evidence to reveal different transfer pathways of Cd and its phytoavailability in paddy systems.

4.
Cell Commun Signal ; 22(1): 272, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750472

ABSTRACT

BACKGROUND: In the tumor immune microenvironment (TIME), triggering receptor expressed on myeloid cells 2 (trem2) is widely considered to be a crucial molecule on tumor-associated macrophages(TAMs). Multiple studies have shown that trem2 may function as an immune checkpoint in various malignant tumors, mediating tumor immune evasion. However, its specific molecular mechanisms, especially in glioma, remain elusive. METHODS: Lentivirus was transfected to establish cells with stable knockdown of trem2. A Transwell system was used for segregated coculture of glioma cells and microglia. Western blotting, quantitative real-time polymerase chain reaction (qRT‒PCR), and immunofluorescence (IF) were used to measure the expression levels of target proteins. The proliferation, invasion, and migration of cells were detected by colony formation, cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. The cell cycle, apoptosis rate and reactive oxygen species (ROS) level of cells were assessed using flow cytometry assays. The comet assay and tube formation assay were used to detect DNA damage in glioma cells and angiogenesis activity, respectively. Gl261 cell lines and C57BL/6 mice were used to construct the glioma orthotopic transplantation tumor model. RESULTS: Trem2 was highly overexpressed in glioma TAMs. Knocking down trem2 in microglia suppressed the growth and angiogenesis activity of glioma cells in vivo and in vitro. Mechanistically, knockdown of trem2 in microglia promoted proinflammatory microglia and inhibited anti-inflammatory microglia by activating jak2/stat1 and inhibiting the NF-κB p50 signaling pathway. The proinflammatory microglia produced high concentrations of nitric oxide (NO) and high levels of the proinflammatory cytokines TNF-α, IL-6, and IL-1ß, and caused further DNA damage and promoted the apoptosis rate of tumor cells. CONCLUSIONS: Our findings revealed that trem2 in microglia plays a significant role in the TIME of gliomas. Knockdown of trem2 in microglia might help to improve the efficiency of inhibiting glioma growth and delaying tumor progression and provide new ideas for further treatment of glioma.


Subject(s)
Glioma , Janus Kinase 2 , Membrane Glycoproteins , Microglia , NF-kappa B , Receptors, Immunologic , STAT3 Transcription Factor , Signal Transduction , Glioma/genetics , Glioma/pathology , Glioma/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Microglia/metabolism , Microglia/pathology , Animals , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , NF-kappa B/metabolism , Mice , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Signal Transduction/genetics , Cell Line, Tumor , Mice, Inbred C57BL , Gene Knockdown Techniques , Cell Proliferation/genetics , Humans , Inflammation/genetics , Inflammation/pathology , Apoptosis/genetics , Disease Progression , Cell Movement/genetics
5.
MedComm (2020) ; 5(4): e519, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38576456

ABSTRACT

Reactive oxygen species (ROS) constitute a spectrum of oxygenic metabolites crucial in modulating pathological organism functions. Disruptions in ROS equilibrium span various diseases, and current insights suggest a dual role for ROS in tumorigenesis and the immune response within cancer. This review rigorously examines ROS production and its role in normal cells, elucidating the subsequent regulatory network in inflammation and cancer. Comprehensive synthesis details the documented impacts of ROS on diverse immune cells. Exploring the intricate relationship between ROS and cancer immunity, we highlight its influence on existing immunotherapies, including immune checkpoint blockade, chimeric antigen receptors, and cancer vaccines. Additionally, we underscore the promising prospects of utilizing ROS and targeting ROS modulators as novel immunotherapeutic interventions for cancer. This review discusses the complex interplay between ROS, inflammation, and tumorigenesis, emphasizing the multifaceted functions of ROS in both physiological and pathological conditions. It also underscores the potential implications of ROS in cancer immunotherapy and suggests future research directions, including the development of targeted therapies and precision oncology approaches. In summary, this review emphasizes the significance of understanding ROS-mediated mechanisms for advancing cancer therapy and developing personalized treatments.

6.
Cancer Lett ; : 216862, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38582396

ABSTRACT

Glioblastoma, previously known as glioblastoma multiform (GBM), is a type of glioma with a high degree of malignancy and rapid growth rate. It is highly dependent on glutamine (Gln) metabolism during proliferation and lags in neoangiogenesis, leading to extensive Gln depletion in the core region of GBM. Gln-derived glutamate is used to synthesize the antioxidant Glutathione (GSH). We demonstrated that GSH levels are also reduced in Gln deficiency, leading to increased reactive oxygen species (ROS) levels. The ROS production induces endoplasmic reticulum (ER) stress, and the proteins in the ER are secreted into the extracellular medium. We collected GBM cell supernatants cultured with or without Gln medium; the core and peripheral regions of human GBM tumor tissues. Proteomic analysis was used to screen out the target-secreted protein CypB. We demonstrated that the extracellular CypB expression is associated with Gln deprivation. Then, we verified that GBM can promote the glycolytic pathway by activating HIF-1α to upregulate the expression of GLUT1 and LDHA expressions. Meanwhile, the DRP1 was activated, increasing mitochondrial fission, thus inhibiting mitochondrial function. To explore the specific mechanism of its regulation, we constructed a si-CD147 knockout model and added human recombinant CypB protein to verify that extracellular CypB influenced the expression of downstream p-AKT through its cell membrane receptor CD147 binding. Moreover, we confirmed that p-AKT could upregulate HIF-1α and DRP1. Finally, we observed that extracellular CypB can bind to the CD147 receptor, activate p-AKT, and upregulate HIF-1α and DRP1 in order to promote glycolysis while inhibiting mitochondrial function to adapt to the Gln-deprived microenvironment.

7.
Nat Commun ; 15(1): 2819, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561338

ABSTRACT

Previous genetic studies of venous thromboembolism (VTE) have been largely limited to common variants, leaving the genetic determinants relatively incomplete. We performed an exome-wide association study of VTE among 14,723 cases and 334,315 controls. Fourteen known and four novel genes (SRSF6, PHPT1, CGN, and MAP3K2) were identified through protein-coding variants, with broad replication in the FinnGen cohort. Most genes we discovered exhibited the potential to predict future VTE events in longitudinal analysis. Notably, we provide evidence for the additive contribution of rare coding variants to known genome-wide polygenic risk in shaping VTE risk. The identified genes were enriched in pathways affecting coagulation and platelet activation, along with liver-specific expression. The pleiotropic effects of these genes indicated the potential involvement of coagulation factors, blood cell traits, liver function, and immunometabolic processes in VTE pathogenesis. In conclusion, our study unveils the valuable contribution of protein-coding variants in VTE etiology and sheds new light on its risk stratification.


Subject(s)
Venous Thromboembolism , Humans , Venous Thromboembolism/genetics , Risk Factors , Blood Coagulation Factors/genetics , Exome , Genome-Wide Association Study , Serine-Arginine Splicing Factors/genetics , Phosphoproteins/genetics
8.
Nat Hum Behav ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589703

ABSTRACT

While numerous genomic loci have been identified for neuropsychiatric conditions, the contribution of protein-coding variants has yet to be determined. Here we conducted a large-scale whole-exome-sequencing study to interrogate the impact of protein-coding variants on 46 neuropsychiatric diseases and 23 traits in 350,770 adults from the UK Biobank. Twenty new genes were associated with neuropsychiatric diseases through coding variants, among which 16 genes had impacts on the longitudinal risks of diseases. Thirty new genes were associated with neuropsychiatric traits, with SYNGAP1 showing pleiotropic effects across cognitive function domains. Pairwise estimation of genetic correlations at the coding-variant level highlighted shared genetic associations among pairs of neurodegenerative diseases and mental disorders. Lastly, a comprehensive multi-omics analysis suggested that alterations in brain structures, blood proteins and inflammation potentially contribute to the gene-phenotype linkages. Overall, our findings characterized a compendium of protein-coding variants for future research on the biology and therapeutics of neuropsychiatric phenotypes.

9.
Angew Chem Int Ed Engl ; : e202405426, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641686

ABSTRACT

Inspired by dative boron-nitrogen (B←N) bonds proven to be the promising dynamic linkage for the construction of crystalline covalent organic polymers/frameworks (COPs/COFs), we employed 1,4-bis(benzodioxaborole) benzene (BACT) and N,N'-Di(4-pyridyl)-1,4,5,8-naphthalenetetracarboxdiimide (DPNTCDI) as the corresponding building blocks to construct a functional COP (named as CityU-25), which had been employed as an anode in rechargeable lithium ion batteries. CityU-25 displayed an excellent reversible lithium storage capability of 455 mAh/g after 170 cycles at 0.1 A/g, and an impressive one of 673 mAh/g after 720 cycles at 0.5 A/g. These findings suggest that CityU-25 is a standout candidate for advanced battery technologies, highlighting the potential application of this type of materials.

10.
Ther Adv Neurol Disord ; 17: 17562864241239117, 2024.
Article in English | MEDLINE | ID: mdl-38616782

ABSTRACT

Multiple sclerosis (MS) was defined as a rare disease in China due to its low prevalence. For a long time, interferon ß was the only approved disease-modifying therapy (DMT). Since the first oral DMT was approved in 2018, DMT approval accelerated, and seven DMTs were approved within 5 years. With an increasing number of DMTs being prescribed in clinical practice, it is necessary to discuss the standardized MS treatment algorithms depending on the disease activity and DMT availability. In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country.


Treatment algorithms of relapsing multiple sclerosis in China In this review paper, more than 20 Chinese experts in MS have reviewed the therapeutic progress of MS in China and worldwide and discussed algorithms for treating relapsing MS (RMS) based on the available DMTs in China, providing insights for establishing the standardized RMS treatment algorithms in this country: 1) CIS and RRMS account for more than 90% of the MS patients and most of them are mild to moderate; 2) MS patients should initiate DMT treatments as soon as the disease has been diagnosed in order to reduce the risk of disease progression; 3) Patients who have been diagnosed with MS should start treatment with fundamental DMTs unless the disease course has been highly active; 4) MAGNIMS score may be a suitable and simplified assessment tool for measuring treatment response to DMTs; 5) Patients treated with corticosteroids and NSIS should be switched to the standardized DMT treatment during remission in accordance with disease activity.

11.
Comput Methods Programs Biomed ; 250: 108162, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631129

ABSTRACT

BACKGROUND AND OBJECTIVES: Sensor-based wearable devices help to obtain a wide range of quantitative gait parameters, which provides sufficient data to investigate disease-specific gait patterns. Although cerebral small vessel disease (CSVD) plays a significant role in gait impairment, the specific gait pattern associated with a high burden of CSVD remains to be explored. METHODS: We analyzed the gait pattern related to high CSVD burden from 720 participants (aged 55-65 years, 42.5 % male) free of neurological disease in the Taizhou Imaging Study. All participants underwent detailed quantitative gait assessments (obtained from an insole-like wearable gait tracking device) and brain magnetic resonance imaging examinations. Thirty-three gait parameters were summarized into five gait domains. Sparse sliced inverse regression was developed to extract the gait pattern related to high CSVD burden. RESULTS: The specific gait pattern derived from several gait domains (i.e., angles, phases, variability, and spatio-temporal) was significantly associated with the CSVD burden (OR=1.250, 95 % CI: 1.011-1.546). The gait pattern indicates that people with a high CSVD burden were prone to have smaller gait angles, more stance time, more double support time, larger gait variability, and slower gait velocity. Furthermore, people with this gait pattern had a 25 % higher risk of a high CSVD burden. CONCLUSIONS: We established a more stable and disease-specific quantitative gait pattern related to high CSVD burden, which is prone to facilitate the identification of individuals with high CSVD burden among the community residents or the general population.


Subject(s)
Cerebral Small Vessel Diseases , Gait , Wearable Electronic Devices , Humans , Cerebral Small Vessel Diseases/diagnostic imaging , Cerebral Small Vessel Diseases/physiopathology , Male , Middle Aged , Female , Aged , Magnetic Resonance Imaging , Gait Analysis/methods
12.
J Alzheimers Dis ; 99(2): 503-511, 2024.
Article in English | MEDLINE | ID: mdl-38669531

ABSTRACT

Background: Neuroinflammation is a major cause of secondary brain injury in intracerebral hemorrhage (ICH). To date, the prognostic value of YKL-40 (chitinase-3-like-1 protein), a biomarker of neuroinflammation, in cerebral amyloid angiopathy-related intracerebral hemorrhage (CAA-ICH) remains undiscovered. Objective: To evaluate the relationships between serum YKL-40 and CAA-ICH recurrence. Methods: Clinical and imaging information of 68 first-onset probable CAA-ICH cases and 95 controls were collected at baseline. Serum YKL-40 was measured by Luminex assay. Cox proportional hazards model was used to analyze the associations between YKL-40 level and CAA-ICH recurrence. Results: Serum YKL-40 level was significantly higher in CAA-ICH cases than healthy controls (median [interquartile range, IQR], 46.1 [19.8, 93.4] versus 24.4 [13.9, 59.0] ng/mL, p = 0.004). Higher level of YKL-40 predicted increased risk of CAA-ICH recurrence adjusted for age, ICH volume and enlarged perivascular space score (ePVS) (above versus below 115.5 ng/ml, adjusted hazard ratios 4.721, 95% confidence intervals 1.829-12.189, p = 0.001) within a median follow-up period of 2.4 years. Adding YKL-40 to a model of only MRI imaging markers including ICH volume and ePVS score improved the discriminatory power (concordance index from 0.707 to 0.772, p = 0.001) and the reclassification power (net reclassification improvement 28.4%; integrated discrimination index 11.0%). Conclusions: Serum YKL-40 level might be a candidate prognostic biomarker for CAA-ICH recurrence.


Subject(s)
Biomarkers , Cerebral Amyloid Angiopathy , Cerebral Hemorrhage , Chitinase-3-Like Protein 1 , Recurrence , Humans , Chitinase-3-Like Protein 1/blood , Male , Female , Aged , Cerebral Amyloid Angiopathy/blood , Cerebral Amyloid Angiopathy/complications , Cerebral Amyloid Angiopathy/diagnostic imaging , Biomarkers/blood , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/diagnostic imaging , Middle Aged , Aged, 80 and over , Magnetic Resonance Imaging
13.
Front Immunol ; 15: 1343531, 2024.
Article in English | MEDLINE | ID: mdl-38558796

ABSTRACT

Objectives: The aims of this study were to report the effectiveness and safety of teriflunomide in Chinese patients with relapsing-remitting multiple sclerosis (RRMS) and to explore the association of paramagnetic rim lesion (PRL) burden with patient outcome in the context of teriflunomide treatment and the impact of teriflunomide on PRL burden. Methods: This is a prospective observational study. A total of 100 RRMS patients treated with teriflunomide ≥3 months were included in analyzing drug persistence and safety. Among them, 96 patients treated ≥6 months were included in assessing drug effectiveness in aspects of no evidence of disease activity (NEDA) 3. The number and total volume of PRL were calculated in 76 patients with baseline susceptibility-weighted imaging (SWI), and their association with NEDA3 failure during teriflunomide treatment was investigated. Results: Over a treatment period of 19.7 (3.1-51.7) months, teriflunomide reduced annualized relapse rate (ARR) from 1.1 ± 0.8 to 0.3 ± 0.5, and Expanded Disability Status Scale (EDSS) scores remained stable. At month 24, the NEDA3% and drug persistence rate were 43.8% and 65.1%, respectively. In patients with a baseline SWI, 81.6% had at least 1 PRL, and 42.1% had ≥4 PRLs. The total volume of PRL per patient was 0.3 (0.0-11.5) mL, accounting for 2.3% (0.0%-49.0%) of the total T2 lesion volume. Baseline PRL number ≥ 4 (OR = 4.24, p = 0.009), younger onset age (OR = 0.94, p = 0.039), and frequent relapses in initial 2 years of disease (OR = 13.40, p = 0.026) were associated with NEDA3 failure. The PRL number and volume were not reduced (p = 0.343 and 0.051) after teriflunomide treatment for more than 24 months. No new safety concerns were identified in this study. Conclusion: Teriflunomide is effective in reducing ARR in Chinese patients with RRMS. Patients with less PRL burden, less frequent relapses, and relatively older age are likely to benefit more from teriflunomide, indicating that PRL might be a valuable measurement to inform clinical treatment decision.


Subject(s)
Hydroxybutyrates , Multiple Sclerosis, Relapsing-Remitting , Multiple Sclerosis , Nitriles , Toluidines , Humans , Multiple Sclerosis/drug therapy , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Crotonates/therapeutic use , Recurrence
14.
BMC Plant Biol ; 24(1): 313, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654158

ABSTRACT

The enzyme glutamine synthetase (GLN) is mainly responsible for the assimilation and reassimilation of nitrogen (N) in higher plants. Although the GLN gene has been identified in various plants, there is little information about the GLN family in cotton (Gossypium spp.). To elucidate the roles of GLN genes in cotton, we systematically investigated and characterized the GLN gene family across four cotton species (G. raimondii, G. arboreum, G. hirsutum, and G. barbadense). Our analysis encompassed analysis of members, gene structure, cis-element, intragenomic duplication, and exploration of collinear relationships. Gene duplication analysis indicated that segmental duplication was the primary driving force for the expansion of the GhGLN gene family. Transcriptomic and quantitative real-time reverse-transcription PCR (qRT-PCR) analyses indicated that the GhGLN1.1a gene is responsive to N induction treatment and several abiotic stresses. The results of virus-induced gene silencing revealed that the accumulation and N use efficiency (NUE) of cotton were affected by the inactivation of GhGLN1.1a. This study comprehensively analyzed the GhGLN genes in Gossypium spp., and provides a new perspective on the functional roles of GhGLN1.1a in regulating NUE in cotton.


Subject(s)
Gene Expression Regulation, Plant , Glutamate-Ammonia Ligase , Gossypium , Nitrogen , Plant Proteins , Gene Duplication , Genes, Plant , Glutamate-Ammonia Ligase/genetics , Glutamate-Ammonia Ligase/metabolism , Gossypium/genetics , Gossypium/metabolism , Multigene Family , Nitrogen/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
15.
Mol Neurobiol ; 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436832

ABSTRACT

Neurofibromatosis type 1 (NF1) is caused by NF1 gene mutations. Patients with NF1 often have complications with tumors, such as neurofibroma. In order to investigate the pathogenesis of human neurofibroma, a systematic comparison of protein expression levels between Schwann cell-like sNF96.2 cells, which originated from malignant peripheral nerve sheath tumors (MPNST), and normal Schwann cells was performed using 4-D label-free proteomic analysis. In addition, the expression levels and localization of dysregulated proteins were confirmed using a Gene Expression Omnibus (GEO) transcriptomic dataset, Western blot analysis, and immunofluorescence labeling. The effects of SRY-box transcription factor 9 (SOX9) in the neurofibroma and surrounding microenvironment were evaluated in vivo using a tumor transplantation model. The present study observed that SOX9 and procollagen C-endopeptidase enhancer (PCOLCE) were significantly altered. NF1 mutation promoted the nuclear translocation and transcriptional activity of SOX9 in neurofibromas. SOX9 increased collagen VI secretions by enhancing the activation of PCOLCE in neurofibroma cells. These findings might provide new perspectives on the pathophysiological significance of SOX9 in neurofibromas and elucidate a novel molecular mechanism underlying neurofibromas.

16.
Animals (Basel) ; 14(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38539930

ABSTRACT

During the transition period, dairy cows exhibit heightened energy requirements to sustain fetal growth and lactogenesis. The mammary gland and the growing fetus increase their demand for glucose, leading to the mobilization of lipids to support the function of tissues that can use fatty acids as energy substrates. These physiological adaptations lead to negative energy balance, metabolic inflammation, and transient insulin resistance (IR), processes that are part of the normal homeorhetic adaptations related to parturition and subsequent lactation. Insulin resistance is characterized by a reduced biological response of insulin-sensitive tissues to normal physiological concentrations of insulin. Metabolic inflammation is characterized by a chronic, low-level inflammatory state that is strongly associated with metabolic disorders. The relationship between IR and metabolic inflammation in transitioning cows is intricate and mutually influential. On one hand, IR may play a role in the initiation of metabolic inflammation by promoting lipolysis in adipose tissue and increasing the release of free fatty acids. Metabolic inflammation, conversely, triggers inflammatory signaling pathways by pro-inflammatory cytokines, thereby leading to impaired insulin signaling. The interaction of these factors results in a harmful cycle in which IR and metabolic inflammation mutually reinforce each other. This article offers a comprehensive review of recent advancements in the research on IR, metabolic inflammation, and their intricate interrelationship. The text delves into multiple facets of physiological regulation, pathogenesis, and their consequent impacts.

17.
Animals (Basel) ; 14(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38540082

ABSTRACT

The objective of this study was to develop an in vitro model that mimics inflammatory reactions and neutrophil extracellular traps (NETs) formation by polymorphonuclear leukocytes (PMNs) in dairy cows. This model was used to examine the effect of carprofen (CA) on lipopolysaccharide (LPS)-induced NETs formation and expression of inflammatory factors. Peripheral blood samples were collected from 24 Holstein cows (3-11 days postpartum) and PMNs were isolated. In three replicates, PMNs were exposed to various treatments to establish an appropriate in vitro model, including 80 µg/mL of LPS for 2 h, followed by co-incubation for 1 h with 60 µmol/L CA and 80 µg/mL LPS. The effects of these treatments were evaluated by assessing NETs formation by extracellular DNA release, gene expression of pro-inflammatory cytokines, reactive oxygen species (ROS) production, and the expression of NETs-related proteins, including histone3 (H3), citrullinated histone (Cit-H3), cathepsin G (CG), and peptidyl arginine deiminase 4 (PAD4). The assessment of these parameters would elucidate the specific mechanism by which CA inhibits the formation of NETs through the PAD4 pathway instead of modulating the Nox2 pathway. This highlights CA's effect on chromatin decondensation during NETs formation. Statistical analyses were performed utilizing one-way ANOVA with Bonferroni correction. The results demonstrated that LPS led to an elevated formation of NETs, while CA mitigated most of these effects, concurrent the PAD4 protein level increased with LPS stimulating and decreased after CA administration. Nevertheless, the intracellular levels of ROS did not change under the presence of LPS. LPS supplementation resulted in an upregulation of H3 and Cit-H3 protein expression levels. Conversely, the CA administration inhibited their expression. Additionally, there was no change in the expression of CG with either LPS or LPS + CA co-stimulation. The gene expression of pro-inflammatory cytokines (tumor necrosis factor -α, interleukin (IL)-18, IL-1ß, and IL-6) upregulated with LPS stimulation, while the treatment with CA inhibited this phenomenon. In conclusion, CA demonstrated a pronounced inhibitory effect on both LPS-induced NETs formation as well as the associated inflammatory response.

18.
Aging Clin Exp Res ; 36(1): 71, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38485798

ABSTRACT

PURPOSE: This study aimed to develop and validate a nomogram for predicting the efficacy of transurethral surgery in benign prostatic hyperplasia (BPH) patients. METHODS: Patients with BPH who underwent transurethral surgery in the West China Hospital and West China Shang Jin Hospital were enrolled. Patients were retrospectively involved as the training group and were prospectively recruited as the validation group for the nomogram. Logistic regression analysis was utilized to generate nomogram for predicting the efficacy of transurethral surgery. The discrimination of the nomogram was assessed using the area under the receiver operating characteristic curve (AUC) and calibration plots were applied to evaluate the calibration of the nomogram. RESULTS: A total of 426 patients with BPH who underwent transurethral surgery were included in the study, and they were further divided into a training group (n = 245) and a validation group (n = 181). Age (OR 1.07, 95% CI 1.02-1.15, P < 0.01), the compliance of the bladder (OR 2.37, 95% CI 1.20-4.67, P < 0.01), the function of the detrusor (OR 5.92, 95% CI 2.10-16.6, P < 0.01), and the bladder outlet obstruction (OR 2.21, 95% CI 1.07-4.54, P < 0.01) were incorporated in the nomogram. The AUC of the nomogram was 0.825 in the training group, and 0.785 in the validation group, respectively. CONCLUSION: The nomogram we developed included age, the compliance of the bladder, the function of the detrusor, and the severity of bladder outlet obstruction. The discrimination and calibration of the nomogram were confirmed by internal and external validation.


Subject(s)
Prostatic Hyperplasia , Transurethral Resection of Prostate , Urinary Bladder Neck Obstruction , Male , Humans , Prostatic Hyperplasia/surgery , Nomograms , Retrospective Studies , Urinary Bladder Neck Obstruction/surgery
19.
Front Neurol ; 15: 1342751, 2024.
Article in English | MEDLINE | ID: mdl-38510381

ABSTRACT

Objectives: To investigate the safety and efficacy of the delipid extracorporeal lipoprotein filter from plasma (DELP) system, a new low-density lipoprotein cholesterol (LDL-C) adsorption system, in acute ischemic stroke (AIS) patients. Patients and methods: In the present study, a total of 180 AIS patients were enrolled during March 2019 to February 2021. They were divided into DELP group (n1 = 90) and the control group (n2 = 90). The treatment protocol and vascular access of DELP treatment was established and evaluated. For the DELP group, clinical data and laboratory results including plasma lipid and safety parameters before and after the apheresis were collected and analyzed. For all participants, neurological scores were assessed and recorded. Results: For the DELP group, 90 patients including 70 males and 20 females were included. The mean LDL-C was significantly decreased from 3.15 ± 0.80 mmol/L to 2.18 ± 0.63 mmol/L (30.79%, p < 0.001) during a single DELP treatment, and decreased from 3.42 ± 0.87 mmol/L to 1.87 ± 0.48 mmol/L (45.32%, p < 0.001) after two DELP treatments. No clinically relevant changes were observed in hematologic safety parameters and blood pressure levels except for hematocrit and total protein throughout the whole period of DELP treatment. The DELP group showed improvement relative to the control group in National Institute of Health stroke scale scores (NIHSS) on the 14th and 90th day after stroke. Moreover, the DELP group had a significantly higher ratio of mRS 0 to 1 on the 90th day after stroke. Conclusion: The new LDL-C adsorption system, the DELP system, may provide a new option for intensive lipid lowering therapy in AIS patients in view of its safety, efficacy, and operation feasibility.

20.
Biotechnol Bioeng ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494789

ABSTRACT

Regulatory authorities recommend using residence time distribution (RTD) to address material traceability in continuous manufacturing. Continuous virus filtration is an essential but poorly understood step in biologics manufacturing in respect to fluid dynamics and scale-up. Here we describe a model that considers nonideal mixing and film resistance for RTD prediction in continuous virus filtration, and its experimental validation using the inert tracer NaNO3 . The model was successfully calibrated through pulse injection experiments, yielding good agreement between model prediction and experiment ( R 2 > ${R}^{2}\gt $ 0.90). The model enabled the prediction of RTD with variations-for example, in injection volumes, flow rates, tracer concentrations, and filter surface areas-and was validated using stepwise experiments and combined stepwise and pulse injection experiments. All validation experiments achieved R 2 > ${R}^{2}\gt $ 0.97. Notably, if the process includes a porous material-such as a porous chromatography material, ultrafilter, or virus filter-it must be considered whether the molecule size affects the RTD, as tracers with different sizes may penetrate the pore space differently. Calibration of the model with NaNO3 enabled extrapolation to RTD of recombinant antibodies, which will promote significant savings in antibody consumption. This RTD model is ready for further application in end-to-end integrated continuous downstream processes, such as addressing material traceability during continuous virus filtration processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...