Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38729801

ABSTRACT

Two-dimensional (2D) ordered carbon-nitrogen binary compounds (CxNy) show great potential in many fields owing to their diverse structures and outstanding properties. However, the scalable and selective synthesis of 2D CxNy compounds remain a challenge due to the variable C/N stoichiometry induced coexistence of graphitic, pyridinic, and pyrrolic N species and the competitive growth of graphene. Here, this work systematically explored the mechanism of selective growth of a series of 2D ordered CxNy compounds, namely, the g-C3N4, C2N, C3N, and C5N, on various epitaxial substrates via first-principles calculations. By establishing the thermodynamic phase diagram, it is revealed that the individualized surface interaction and symmetry match between 2D CxNy compounds and substrates together enable the selective epitaxial growth of single crystal 2D CxNy compounds within distinct chemical potential windows of feedstock. The kinetics behaviors of the diffusion and attachment of the decomposed feedstock C/N atoms to the growing CxNy clusters further confirmed the feasibility of the substrate mediated selective growth of 2D CxNy compounds. Moreover, the optimal experimental conditions, including the temperature and partial pressure of feedstock, are suggested for the selective growth of targeted 2D CxNy compound on individual epitaxial substrates by carefully considering the chemical potential of carbon/nitrogen as the functional of experimental parameters based on the standard thermochemical tables. This work provides an insightful understanding on the mechanism of selective epitaxial growth of 2D ordered CxNy compounds for guiding the future experimental design.

2.
J Phys Chem Lett ; 14(51): 11665-11672, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38109335

ABSTRACT

Two-dimensional (2D) hexagonal boron nitride (h-BN) exhibits promising properties for electronic and photoelectric devices, while the growth of high-quality h-BN remains challenging. Here we theoretically explored the mechanism of epitaxial growth of high-quality h-BN by using the preoxidized and hydrogen-annealed copper substrate, i.e., Cu2O. It is revealed thermodynamically that the unidirectional nucleation of h-BN can be rationalized on the symmetry-matched Cu2O(111) surface rather than the antiparallel nucleation on the Cu(111) surface. Kinetically, the dehydrogenation of feedstock of h-BN on the Cu2O(111) surface is also much easier than that on the Cu(111) surface. Both the B and N atoms are energetically more preferred to stay on the surface rather than inside the body of Cu2O, which leads to a surface-diffusion-based growth behavior on the Cu2O(111) surface instead of the precipitation-diffusion mixed case on the Cu(111) surface. Our work may guide future experimental design for the controllable growth of wafer-scale single-crystal h-BN.

3.
Nature ; 605(7908): 69-75, 2022 05.
Article in English | MEDLINE | ID: mdl-35508774

ABSTRACT

Two-dimensional transition-metal dichalcogenides (TMDs) are of interest for beyond-silicon electronics1,2. It has been suggested that bilayer TMDs, which combine good electrostatic control, smaller bandgap and higher mobility than monolayers, could potentially provide improvements in the energy-delay product of transistors3-5. However, despite advances in the growth of monolayer TMDs6-14, the controlled epitaxial growth of multilayers remains a challenge15. Here we report the uniform nucleation (>99%) of bilayer molybdenum disulfide (MoS2) on c-plane sapphire. In particular, we engineer the atomic terrace height on c-plane sapphire to enable an edge-nucleation mechanism and the coalescence of MoS2 domains into continuous, centimetre-scale films. Fabricated field-effect transistor (FET) devices based on bilayer MoS2 channels show substantial improvements in mobility (up to 122.6 cm2 V-1 s-1) and variation compared with FETs based on monolayer films. Furthermore, short-channel FETs exhibit an on-state current of 1.27 mA µm-1, which exceeds the 2028 roadmap target for high-performance FETs16.

4.
Adv Mater ; 34(20): e2201402, 2022 May.
Article in English | MEDLINE | ID: mdl-35288996

ABSTRACT

Multilayer MoS2 shows superior performance over the monolayer MoS2 for electronic devices while the growth of multilayer MoS2 with controllable and uniform thickness is still very challenging. It is revealed by calculations that monolayer MoS2 domains are thermodynamically much more favorable than multilayer ones on epitaxial substrates due to the competition between surface interactions and edge formation, leading accordingly to a layer-by-layer growth pattern and non-continuously distributed multilayer domains with uncontrollable thickness uniformity. The thermodynamics model also suggests that multilayer MoS2 domains with aligned edges can significantly reduce their free energy and represent a local minimum with very prominent energy advantage on a potential energy surface. However, the nucleation probability of multilayer MoS2 domains with aligned edges is, if not impossible, extremely rare on flat substrates. Herein, a step-guided mechanism for the growth of uniform multilayer MoS2 on an epitaxial substrate is theoretically proposed. The steps with proper height on sapphire surface are able to guide the simultaneous nucleation of multilayer MoS2 with aligned edges and uniform thickness, and promote the continuous growth of multilayer MoS2 films. The proposed mechanism can be reasonably extended to grow multilayer 2D materials with uniform thickness on epitaxial substrates.

5.
RSC Adv ; 9(71): 41918-41926, 2019 Dec 13.
Article in English | MEDLINE | ID: mdl-35541598

ABSTRACT

The reaction of aluminum and water is widely used in the field of propulsion and hydrogen production, but its reaction characteristics at the nanometer scale have not been fully studied. In this paper, the effect of particle size and surface passivation of aluminum particle on the reaction mechanism was studied by using reactive molecular dynamics (RMD) simulation. The reduction of aluminum particle size can accelerate the reaction rate in the medium term (20-80 ps) due to the increase of activity, but it also produces an agglomeration effect as the temperature increases. The presence of surface passivation reduces the proportion of active aluminum and the yield of hydrogen decreases by 30% and 33%, respectively, as the particle size decreases from 2.5 nm to 1.6 nm. The addition of AlH3 can overcome these drawbacks when some aluminum powders are replaced by AlH3. The hydrogen yield is increased by the reaction 2AlH3 + 3H2O → Al2O3 + 6H2. In the reaction of surface passivated Al (1.6 nm in diameter) and H2O, when the proportion of AlH3 reaches 25%, the energy release and hydrogen yield increase from 59.47 kJ mol-1 and 0.0042 mol g-1 to 142.56 kJ mol-1 and 0.0076 mol g-1, respectively. This performance even approximates the reaction of pure aluminum with water: 180.67 kJ mol-1 and 0.0087 mol g-1. In addition, the surface passivation affects the reaction mechanism. Before the passivation layer melts, the reaction 4Al + Al2O3 → 3Al2O occurs inside the nanoparticles.

SELECTION OF CITATIONS
SEARCH DETAIL
...