Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(51): 111039-111050, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37801244

ABSTRACT

Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) have been proved as efficient catalysts for photocatalytic hydrogen (H2) evolution, thanks to their tunable functionalities, permanent porosity, excellent visible light response, and physicochemical stability. Herein, a series of photocatalysts (termed NUBC) was fabricated by loading different amounts of Zr-UiO-66-NH2 (NU) onto a benzoic acid-modified covalent triazine-based framework (BC) based on post-synthetic covalent modification. The resulting NUBC catalysts exhibited a type-II Z-scheme heterojunction structure formed via the amide covalent bonds between the amine groups on NU and carboxyl groups on BC. The optimal loading of NU on BC is 30 wt.% (30NUBC) and the corresponding photocatalytic H2 evolution rate was 378 µmol h-1 g-1, almost 445 and 2 times than that of NU and BC, respectively. The synergistic effect between the type-II Z-scheme heterojunctions and amide bonds was conducive to boosting visible light harvesting and facilitating charge transportation and separation. Furthermore, the prepared NUBC catalysts show great reusability and stability. Overall, this work sheds light on the design of novel MOF/COF hybrid materials and provides a systematic exploration of their photocatalytic H2 evolution properties.


Subject(s)
Metal-Organic Frameworks , Phthalic Acids , Amides , Triazines
2.
Sci Total Environ ; 860: 160473, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36455736

ABSTRACT

It is a feasible strategy to prepare reliable biochar catalysts for heterogeneous catalytic ozonation (HCO) processes by using inexpensive, high quality, and easily available raw materials. Here, an environmentally friendly, simple, and green biochar catalyst rich in nitrogen (N) and sulfur (S) has been prepared by the pyrolysis of kelp. Compared with directly carbonized kelp biomass (KB), acid-activated KB (KBA) and base-activated KB (KBB) have higher specific surface areas and more extensive porous structures, although only KBB displays effective ozone activation. Imazapic (IMZC), a refractory organic herbicide, was chosen as the target pollutant, which has apparently not hitherto been investigated in the HCO process. Second-order rate constants (k) for the reactions of IMZC with three different reactive oxygen species (ROS), specifically kO3, IMZC, kOH, IMZC, and k1O2, IMZC, have been determined as 0.974, 2.48 × 109, and 6.23 × 105 M-1 s-1, respectively. The amounts of graphitic N and thiophene S derived from the intrinsic N and S showed good correlations with the IMZC degradation rate, implicating them as the main active sites. OH and O2- and 1O2 were identified as main ROS in heterogeneous catalytic ozonation system for IMZC degradation. This study exemplified the utilization of endogenous N and S in biological carbon, and provided more options for the application of advanced oxidation processes and the development of marine resources.


Subject(s)
Kelp , Ozone , Water Pollutants, Chemical , Reactive Oxygen Species , Catalytic Domain , Ozone/chemistry , Catalysis , Water Pollutants, Chemical/chemistry
3.
Chemosphere ; 291(Pt 3): 132889, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34780747

ABSTRACT

A metal oxide electrode has been developed for the electrochemical CO2 reduction reaction (eCO2RR). It exhibits superior activity and product selectivity towards eCO2RR by circumventing the previously encountered problem of self-reduction with high-valence metals. Specifically, a hydrocerussite [Pb3(CO3)2(OH)2] thin film has been synthesized in situ on a Pb substrate (denoted as ER-HC) by an electroreduction method using a lead-based metal-organic framework (Pb-MOF) as a precursor. The ER-HC electrode exhibits a high selectivity of 96.8% towards HCOOH production with a partial current density of 1.9 mA cm-2 at -0.88 V vs. the reversible hydrogen electrode (RHE). A higher HCOOH partial current density of 7.3 mA cm-2 has been achieved at -0.98 V vs. RHE. Physicochemical and electrochemical characterization results demonstrate that the defective hydrocerussite surface exhibits appropriate adsorption free energy of formate (HCOO-) and a lower reaction free energy for HCOOH production from CO2, which greatly boosts the eCO2RR activity and HCOOH production selectivity. The structure and eCO2RR performance of the hydrocerussite thin film remain stable in 0.1 M KHCO3 as electrolyte, ensuring its durability. Overall, this work not only provides a metal oxide electrode (metal hydroxide, to be more precise) with excellent eCO2RR performance, but also expands the in situ electrochemical derivatization strategy for the fabrication of metal oxide electrodes.


Subject(s)
Carbon Dioxide , Lead , Carbonates , Electrochemical Techniques , Oxidation-Reduction
4.
Chin J Nat Med ; 14(8): 626-40, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27608953

ABSTRACT

More than 80 aristolochic acids (AAs) and aristololactams (ALs) have been found in plants of the Aristolochiaceae family, but relatively few have been fully studied. The present study aimed at developing and validating a liquid chromatography tandem mass spectrometry (LC/MS(n)) for the analysis of these compounds. We characterized the fragmentation behaviors of 31 AAs, ALs, and their analogues via high performance liquid chromatography coupled with electrospray ionization mass spectrometry. We summarized their fragmentation rules and used these rules to identify the constituents contained in Aristolochia contorta, Ar. debilis, Ar. manshurensis, Ar. fangchi, Ar. cinnabarina, and Ar. mollissima. The AAs and ALs showed very different MS behaviors. In MS(1) of AAs, the characteristic pseudomolecular ions were [M + NH4](+), [M + H](+), and [M + H - H2O](+). However, only [M + H](+) was found in the MS(1) of ALs, which was simpler than that of AAs. Distinct MS(n)fragmentation patterns were found for AAs and ALs, showing the same skeleton among the different substituent groups. The distribution of the 31 constituents in the 6 species of Aristolochia genus was reported for the first time. 25 Analogues of AAs and ALs were detected in this genus. A hierarchical schemes and a calculating formula of the molecular formula of these nitrophenanthrene carboxylic acids and their lactams were proposed. In conclusion, this method could be applied to identification of similar unknown constituents in other plants.


Subject(s)
Aristolochiaceae/chemistry , Aristolochic Acids/chemistry , Chromatography, High Pressure Liquid/methods , Drugs, Chinese Herbal/chemistry , Tandem Mass Spectrometry/methods , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL