Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Pollut Bull ; 208: 116931, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39278177

ABSTRACT

Tin-free self-polishing antifouling coatings have the highest market share since organotin self-polishing antifouling coatings have been banned. However, its high dependence on cuprous oxide was found to have caused potential harm to the environment, making it necessary to improve the functionality of the resin. In this paper, a zinc acrylate resin with side chain hanging indole derivative structure was prepared by using N-(1H-5-bromoindole-3-methylene) (BIAM) with good biological activity as functional monomer. The functional resin with good antifouling performance was selected by antibacterial and algae inhibition experiments. The results showed that when the BIAM content was 9 %, the inhibition rates of the resin on E. coli and Prymnesium parvum reached 98 % and 90 %, respectively. Tin-free self-polishing antifouling coatings were prepared using the above resins as film-forming materials. The anti-protein adsorption performance and antifouling performance of the coating were tested by anti-protein adsorption experiment and real sea hanging plate experiment. The results showed that the coating containing indole derivative structure had good anti-protein adsorption performance and antifouling performance, and the higher the BIAM content, the better the anti-protein adsorption performance and marine antifouling performance.

2.
ISME J ; 2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39180723

ABSTRACT

Tryptophan (Trp) has been shown to regulate immune function by modulating gut serotonin (5-HT) metabolism and signaling. However, the mechanisms underlying the microbial modulation of gut 5-HT signaling in gut inflammation with gut microbiota dysbiosis require further investigation. Here, we investigated the effects of Trp supplementation on the composition and metabolism of the gut microbiome and 5-HT signaling-related gut immune function using a dextran sodium sulfate (DSS)-induced colitis mouse model coupled with antibiotic exposure. The results showed that antibiotic treatment before but not during DSS treatment decreased the immunoregulatory effects of Trp and aggravated gut inflammation and body weight loss in mice. Metagenomic analysis revealed that the fecal microbiota transplantation (FMT) of Trp-enriched gut microbiota to recipient mice subject to antibiotic preexposure and DSS treatment aggravated inflammation by increasing the relative abundances of Lactobacillus and Parabacteroides and the microbial production of indole coupled with the activation of the 5-HT receptor HTR2B in the colon. Transcriptomic analysis showed that HTR2B agonist administration strengthened the beneficial effects of Trp in DSS-induced colitis mice with antibiotic exposure by reducing gut lipopolysaccharide-binding protein (LBP) production, IκB-α/nuclear factor-κB signaling, and M1 macrophage polarization. Indole treatment reduced LBP production and M1 macrophage polarization both in mice with DSS-induced colitis and in lipopolysaccharide-treated mouse macrophages; however, the HTR2B antagonist reversed the effects of indole. Our findings provide the basis for developing new dietary and therapeutic interventions to improve gut microbiota dysbiosis-associated inflammatory gut disorders and diseases.

3.
Bioresour Technol ; 399: 130647, 2024 May.
Article in English | MEDLINE | ID: mdl-38561152

ABSTRACT

A constructed microbial consortia-based strategy to enhance caproic acid production from one-stage mixed-fermentation of glucose was developed, which incubated with acidogens (Clostridium sensu stricto 1, 11 dominated) and chain elongators (including Clostridium sensu stricto 12, Sporanaerobacter, and Caproiciproducens) acclimated from anaerobic sludge. Significant product upgrading toward caproic acid (8.31 g‧L-1) and improved substrate degradation was achieved, which can be greatly attributed to the lactic acid platform. Whereas, a small amount of caproic acid was observed in the control incubating with acidogens, with an average concentration of 2.09 g‧L-1. The strategy accelerated the shape and cooperation of the specific microbial community dominated by Clostridium sensu stricto and Caproiciproducens, which thereby contributed to caproic acid production via the fatty acid biosynthesis pathway. Moreover, the tailored electrodialysis with bipolar membrane enabled progressive up-concentration and acidification, allowing selective separation of caproic acid as an immiscible product with a purity of 82.58 % from the mixture.


Subject(s)
Caproates , Clostridium , Fermentation , Anaerobiosis , Caproates/metabolism , Clostridium/metabolism , Bioreactors
4.
Bioresour Technol ; 346: 126578, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34953993

ABSTRACT

Agriculture bio-waste is one of the largest sectors for nutrient circulation and resource recovery. This review intends to summarize the possible scheme through coupling chemical conversion of crop straws to biochar and biological conversion of livestock waste to value-added products thus reaching key nutrient circulation. Chemical conversion of crop straws to biochar was reviewed through summarizing the preparation methods and functional modification of biochar. Then, high-solid two-phase anaerobic conversion of agriculture bio-waste to value-added products and improved performance of bio-conversion through byproduct gases reuse and biochar supplementation were reviewed. Finally, high quality compost production through amendment of biochar and residual digestate was proposed with analysis of reduced nitrogen emission and carbon balance. The biological mechanism of synergistic regulation of carbon and nitrogen loss during bio-conversion with biochar was also reviewed. This will provide a model for synergistic conversion of agricultural wastes to value added products pursuing key nutrient circulation.


Subject(s)
Agriculture , Composting , Anaerobiosis , Carbon , Charcoal , Nutrients , Soil
5.
J Am Chem Soc ; 125(49): 15151-62, 2003 Dec 10.
Article in English | MEDLINE | ID: mdl-14653750

ABSTRACT

Prolonged storage ( approximately 2 years) or gentle heating (50-80 degrees C) of crystalline 2,5-dibromo-3,4-ethylenedioxythiophene (DBEDOT) affords a highly conducting, bromine-doped poly(3,4-ethylenedioxythiophene) (PEDOT), as confirmed by solid-state NMR, FTIR, CV, and vis-NIR spectroscopies. The novel solid-state polymerization (SSP) does not occur for 2,5-dichloro-3,4-ethylenedioxythiophene (DCEDOT), and requires a much higher temperature (>130 degrees C) for 2,5-diiodo-3,4-ethylenedioxythiophene (DIEDOT). X-ray structural analysis of the above dihalothiophenes reveals short Hal.Hal distances between adjacent molecules in DBEDOT and DIEDOT, but not in DCEDOT. The polymerization may also occur in the melt but is significantly slower and leads to poorly conductive material. Detailed studies of the reaction were performed using ESR, DSC, microscopy, and gravimetric analyses. SSP starts on crystal defect sites; it is exothermic by 14 kcal/mol and requires activation energy of approximately 26 kcal/mol (for DBEDOT). The temperature dependence of the conductivity of SSP-PEDOT (sigma(rt) = 20-80 S/cm) reveals a slight thermal activation. It can be further increased by a factor of 2 by doping with iodine. Using this approach, thin films of PEDOT with conductivity as high as 20 S/cm were fabricated on insulating flexible plastic surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL