Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Chem Commun (Camb) ; 56(73): 10702-10705, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32789365

ABSTRACT

Triphenylimidazole-based ampholytes with intramolecular charge transfer were designed with the introduction of carboxyl groups. In solution, the synergistic solvent and ionization effects on the ampholytes led to a unique pendulum-type fluorescence variation during the water content increasing process. Among them, 4-(4,5-bis(4-hydroxyphenyl)-1H-imidazol-2-yl)benzoic acid showed the most prominent three-step fluorescence switching property.

2.
J Surg Res ; 256: 295-302, 2020 12.
Article in English | MEDLINE | ID: mdl-32712444

ABSTRACT

BACKGROUND: To explore the mechanism of Shenmai injection (SMI) on severe acute pancreatitis (SAP) through heme oxygenase-1 (HO-1) signaling. METHODS: A total of 40 male Sprague-Dawley (SD) rats (220-260 g) were grouped into the following four categories (n = 10): SAP + SMI + Zinc protoporphyrin (ZnPP), SAP + SMI, SAP, and sham surgery groups. ZnPP is a specific inhibitor of HO-1. Four percent of sodium taurocholate (1 mL/kg) was retrogradely injected via the pancreatic duct to induce the SAP model. The SAP group rats received 1.6 mL/kg saline by intravenous injection 30 min after the induction of SAP. The SAP + SMI group rats received 1.6 mL/kg SMI by intravenous injection 30 min after the induction of SAP. The SAP + SMI + ZnPP group rats received an intravenous injection of 1.6 mL/kg SMI and intraperitoneal administration of 30 mg/kg ZnPP 30 min after the SAP induction. Twenty-four hours after the SAP induction, blood samples were collected for the measurement of amylase, lipase, creatinine, myeloperoxidase, interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and HO-1 level, while tissue specimens were harvested for the determination of HO-1, TNF-α, and IL-10 mRNA level. Meanwhile, histopathological changes in organs (pancreas, lung, and kidney) were stored. RESULTS: The serum concentration of amylase, lipase, creatinine, and myeloperoxidase was higher in the SAP group than in the SAP + SMI group. Treatment with SMI increased HO-1 and IL-10 level and reduced TNF-α level in serum and tissues compared to the SAP group (P < 0.05). Treatment with SMI abolished the organ-damaging effects of SAP (P < 0.05). Furthermore, suppression of HO-1 expression by ZnPP canceled the aforementioned effects. CONCLUSIONS: SMI confers protection against the SAP-induced systemic inflammatory response and multiple organs damage via HO-1 upregulation.


Subject(s)
Drugs, Chinese Herbal/administration & dosage , Heme Oxygenase (Decyclizing)/metabolism , Pancreas/drug effects , Pancreatitis/drug therapy , Systemic Inflammatory Response Syndrome/prevention & control , Amylases/blood , Animals , Disease Models, Animal , Drug Combinations , Humans , Lipase/blood , Male , Pancreas/immunology , Pancreas/pathology , Pancreatitis/blood , Pancreatitis/complications , Pancreatitis/diagnosis , Peroxidase/blood , Rats , Severity of Illness Index , Systemic Inflammatory Response Syndrome/blood , Systemic Inflammatory Response Syndrome/diagnosis , Systemic Inflammatory Response Syndrome/etiology , Up-Regulation/drug effects
3.
BMC Gastroenterol ; 17(1): 100, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28836936

ABSTRACT

BACKGROUND: Heme oxygenase-1 (HO-1) is an inducible defense gene which plays a significant role in inflammation. HO-1 protects cells and tissues through the mechanism of anti-oxidation, maintaining microcirculation and anti-inflammation. The aim of the current study is to investigate the role of HO-1 on systemic inflammatory response in severe acute pancreatitis (SAP). METHODS: Forty male Sprague-Dawley (SD) rats were randomly assigned into four groups: control group (n = 10); SAP group (n = 10), SAP model was induced by retrograde injection of 3% sodium taurocholate through pancreatic duct; HO-1 stimulation group (n = 10), SD rats were injected 75 µg/kg hemin intraperitoneally 30 min after induction of SAP; HO-1 inhibition group (n = 10), SD rats were injected 20 µg/kg Zinc porphyrin (Zn-PP) intraperitoneally 30 min after induction of SAP. After 24 h of SAP establishment, tissues were collected for HO-1, tumor necrosis factor-α (TNF-α) and interleukin-10 (IL-10) mRNA expression, and blood samples were collected for cytokines and biochemical measurements. Meanwhile, the histopathological changes of pancreas and liver tissues were observed. RESULTS: The expression of HO-1 mRNA and protein were significantly induced by SAP in rat pancreas and liver. Hemin treatment significantly decreased oxidative stress and TNF-α in plasma and tissues, while the IL-10 was significantly increased. Pancreas and liver injury induced by SAP was markedly attenuated by Hemin treatment. Moreover, inhibition of HO-1 expression by Zn-PP administration aggravated the injury caused by SAP. CONCLUSIONS: Induction of HO-1 in early SAP may modulate systemic inflammatory response and prevent pancreas and nearby organs such as liver injury through inhibition of TNF-α and augmentation of IL-10.


Subject(s)
Heme Oxygenase-1/pharmacology , Interleukin-10/metabolism , Pancreatitis/drug therapy , Protective Agents/pharmacology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Acute Disease , Animals , Disease Models, Animal , Hemin/pharmacology , Liver/metabolism , Male , Metalloporphyrins/pharmacology , Oxidative Stress/drug effects , Pancreas/metabolism , Pancreatitis/chemically induced , Rats , Rats, Sprague-Dawley , Taurocholic Acid
4.
Opt Express ; 24(10): 10359-75, 2016 May 16.
Article in English | MEDLINE | ID: mdl-27409860

ABSTRACT

We propose a new approach for optical refocusing of three-dimensional (3-D) objects on their real depth without a pickup-range limitation based on subdivided-elemental image arrays (sub-EIAs) and local periodic δ-function arrays (L-PDFAs). The captured EIA from the 3-D objects locating out of the pickup-range, is divided into a number of sub-EIAs depending on the object distance from the lens array. Then, by convolving these sub-EIAs with each L-PDFA whose spatial period corresponds to the specific object's depth, as well as whose size is matched to that of the sub-EIA, arrays of spatially-filtered sub-EIAs (SF-sub-EIAs) for each object depth can be uniquely extracted. From these arrays of SF-sub-EIAs, 3-D objects can be optically reconstructed to be refocused on their real depth. Operational principle of the proposed method is analyzed based on ray-optics. In addition, to confirm the feasibility of the proposed method in the practical application, experiments with test objects are carried out and the results are comparatively discussed with those of the conventional method.

5.
Opt Express ; 24(4): 3638-51, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26907021

ABSTRACT

We propose a new type of integral imaging-based large-scale full-color three-dimensional (3-D) display of holographic data based on direct ray-optical conversion of holographic data into elemental images (EIs). In the proposed system, a 3-D scene is modeled as a collection of depth-sliced object images (DOIs), and three-color hologram patterns for that scene are generated by interfering each color DOI with a reference beam, and summing them all based on Fresnel convolution integrals. From these hologram patterns, full-color DOIs are reconstructed, and converted into EIs using a ray mapping-based direct pickup process. These EIs are then optically reconstructed to be a full-color 3-D scene with perspectives on the depth-priority integral imaging (DPII)-based 3-D display system employing a large-scale LCD panel. Experiments with a test video confirm the feasibility of the proposed system in the practical application fields of large-scale holographic 3-D displays.

6.
Sci Rep ; 5: 14056, 2015 Sep 11.
Article in English | MEDLINE | ID: mdl-26358334

ABSTRACT

A color-tunable novel-look-up-table (CT-NLUT) for fast one-step calculation of full-color computer-generated holograms is proposed. The proposed method is composed of four principal fringe patterns (PFPs) such as a baseline, a depth-compensating and two color-compensating PFPs. CGH patterns for one color are calculated by combined use of baseline-PFP and depth-compensating-PFP and from them, those for two other colors are generated by being multiplied by the corresponding color-compensating-PFPs. color-compensating-PFPs compensate for differences in the wavelength between two colors based on their unique achromatic thin-lens properties, enabling transformation of one-color CGH pattern into those for other colors. This color-conversion property of the proposed method enables simultaneous generation of full color-CGH patterns, resulting in a significant reduction of the full color-CGH calculation time. Experimental results with test scenario show that the full color-CGH calculation time of the proposed CT-NLUT has been reduced by 45.10%, compared to the conventional NLUT. It has been further reduced by 96.01% when a data compression algorithm, called temporal redundancy-based NLUT, was used together, which means 25-fold reduction of its full color-CGH calculation time. Successful computational and optical reconstructions of full color-CGH patterns confirm the feasibility of the proposed method.

7.
Opt Express ; 22(14): 16925-44, 2014 Jul 14.
Article in English | MEDLINE | ID: mdl-25090509

ABSTRACT

A new three-directional motion compensation-based novel-look-up-table (3DMC-NLUT) based on its shift-invariance and thin-lens properties, is proposed for video hologram generation of three-dimensional (3-D) objects moving with large depth variations in space. The input 3-D video frames are grouped into a set of eight in sequence, where the first and remaining seven frames in each set become the reference frame (RF) and general frames (GFs), respectively. Hence, each 3-D video frame is segmented into a set of depth-sliced object images (DOIs). Then x, y, and z-directional motion vectors are estimated from blocks and DOIs between the RF and each of the GFs, respectively. With these motion vectors, object motions in space are compensated. Then, only the difference images between the 3-directionally motion-compensated RF and each of the GFs are applied to the NLUT for hologram calculation. Experimental results reveal that the average number of calculated object points and the average calculation time of the proposed method have been reduced compared to those of the conventional NLUT, TR-NLUT and MPEG-NLUT by 38.14%, 69.48%, and 67.41% and 35.30%, 66.39%, and 64.46%, respectively.

8.
Opt Express ; 22(7): 8047-67, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24718180

ABSTRACT

A new robust MPEG-based novel look-up table (MPEG-NLUT) is proposed for accelerated computation of video holograms of fast-moving three-dimensional (3-D) objects in space. Here, the input 3-D video frames are sequentially grouped into sets of four, in which the first and remaining three frames in each set become the reference (RF) and general frames (GFs). Then, the frame images are divided into blocks, from which motion vectors are estimated between the RF and each of the GFs, and with these estimated motion vectors, object motions in all blocks are compensated. Subsequently, only the difference images between the motion-compensated RF and each of the GFs are applied to the NLUT for CGH calculation based on its unique property of shift-invariance. Experiments with three types of test 3-D video scenarios confirm that the average number of calculated object points and the average calculation time of the proposed method, have found to be reduced down to 27.34%, 55.46%, 45.70% and 19.88%, 44.98%, 30.72%, respectively compared to those of the conventional NLUT, temporal redundancy-based NLUT (TR-NLUT) and motion compensation-based NLUT (MC-NLUT) methods.

9.
Opt Express ; 21(9): 11568-84, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23670014

ABSTRACT

A novel approach for fast generation of video holograms of three-dimensional (3-D) moving objects using a motion compensation-based novel-look-up-table (MC-N-LUT) method is proposed. Motion compensation has been widely employed in compression of conventional 2-D video data because of its ability to exploit high temporal correlation between successive video frames. Here, this concept of motion-compensation is firstly applied to the N-LUT based on its inherent property of shift-invariance. That is, motion vectors of 3-D moving objects are extracted between the two consecutive video frames, and with them motions of the 3-D objects at each frame are compensated. Then, through this process, 3-D object data to be calculated for its video holograms are massively reduced, which results in a dramatic increase of the computational speed of the proposed method. Experimental results with three kinds of 3-D video scenarios reveal that the average number of calculated object points and the average calculation time for one object point of the proposed method, have found to be reduced down to 86.95%, 86.53% and 34.99%, 32.30%, respectively compared to those of the conventional N-LUT and temporal redundancy-based N-LUT (TR-N-LUT) methods.


Subject(s)
Algorithms , Holography/methods , Image Enhancement/methods , Imaging, Three-Dimensional/methods , Information Storage and Retrieval/methods , Video Recording/methods , Feedback , Motion
SELECTION OF CITATIONS
SEARCH DETAIL