Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 11(7): e2306825, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064125

ABSTRACT

Chirality and polarity are the two most important and representative symmetry-dependent properties. For polar structures, all the twofold axes perpendicular to the principal axis of symmetry should be removed. For chiral structures, all the mirror-related symmetries and inversion axes should be removed. Especially for duality (polarity and chirality), all of the above symmetries should be broken and that also represents the highest-level challenge. Herein, a new symmetry-breaking strategy that employs heteroanionic groups to construct hourglass-like [Sr3 OGeS3 ]2+ and [Sr3 SGeS3 ]2+ groups to design and synthesize a new oxychalcogenide Sr18 Ge9 O5 S31 with chiral-polar duality is proposed. The presence of two enantiomers of Sr18 Ge9 O5 S31 is confirmed by the single-crystal X-ray diffraction. Its optical activity and ferroelectricity are also studied by solid-state circular dichroism spectroscopy and piezoresponse force microscopy, respectively. Further property measurements show that Sr18 Ge9 O5 S31 possesses excellent nonlinear optical properties, including the strong second harmonic generation efficiency (≈2.5 × AGS), large bandgap (3.61 eV), and wide mid-infrared transparent region (≈15.3 µm). These indicate that the unique microstructure groups of heteroanionic materials are conducive to realizing symmetry-breaking and are able to provide some inspiration for exploring the chiral-polar duality materials.

2.
Materials (Basel) ; 16(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36837127

ABSTRACT

Crystal coating is an important process in laser crystal applications. According to the crystal characteristics of neodymium-doped yttrium vanadate (Nd:YVO4), its intrinsic parameters, and optical film design theory, Ta2O5 and SiO2 were selected separately as high and low refractive index materials. The optical properties and surface roughness of the films were characterized by OptiLayer and Zygo interferometers, and the effects of ion source bias on refractive index and surface roughness were investigated so that the optimal ion source parameters were determined. Optical monitoring and quartz crystal control were combined to accurately control the thickness of each film layer and to reduce the monitoring error of film thickness. The prepared crystal device was successfully applied to the 1176 nm laser output system.

SELECTION OF CITATIONS
SEARCH DETAIL