Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Plant Cell ; 36(5): 1451-1464, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38163634

ABSTRACT

As the most widely used herbal medicine in human history and a major defence hormone in plants against a broad spectrum of pathogens and abiotic stresses, salicylic acid (SA) has attracted major research interest. With applications of modern technologies over the past 30 years, studies of the effects of SA on plant growth, development, and defence have revealed many new research frontiers and continue to deliver surprises. In this review, we provide an update on recent advances in our understanding of SA metabolism, perception, and signal transduction mechanisms in plant immunity. An overarching theme emerges that SA executes its many functions through intricate regulation at multiple steps: SA biosynthesis is regulated both locally and systemically, while its perception occurs through multiple cellular targets, including metabolic enzymes, redox regulators, transcription cofactors, and, most recently, an RNA-binding protein. Moreover, SA orchestrates a complex series of post-translational modifications of downstream signaling components and promotes the formation of biomolecular condensates that function as cellular signalling hubs. SA also impacts wider cellular functions through crosstalk with other plant hormones. Looking into the future, we propose new areas for exploration of SA functions, which will undoubtedly uncover more surprises for many years to come.


Subject(s)
Plant Immunity , Salicylic Acid , Signal Transduction , Salicylic Acid/metabolism , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Plants/immunology , Plants/metabolism , Plants/genetics , Plant Proteins/metabolism , Plant Proteins/genetics
2.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260692

ABSTRACT

For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for both basal and systemic acquired resistance (SAR). SA activates these immune responses by reprogramming up to 20% of the transcriptome through the function of NPR1. However, components in the NPR1-signaling hub, which appears as nuclear condensates, and the NPR1- signaling cascade remained elusive due to difficulties in studying transcriptional cofactors whose chromatin associations are often indirect and transient. To overcome this challenge, we applied TurboID to divulge the NPR1-proxiome, which detected almost all known NPR1-interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, NPR1-proxiome shares a striking similarity to GBPL3-proxiome involved in SA synthesis, except associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise greenCUT&RUN analyses showed that, upon SA-induction, NPR1 initiates the transcriptional cascade primarily through association with TGA TFs to induce expression of secondary TFs, predominantly WRKYs. WRKY54 and WRKY70 then play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, a loss of NPR1 condensate formation decreases its chromatin-association and transcriptional activity, indicating the importance of condensates in organizing the NPR1- signaling hub and initiating the transcriptional cascade. This study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades.

3.
Mol Cell ; 84(1): 131-141, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38103555

ABSTRACT

Nonexpressor of pathogenesis-related genes 1 (NPR1) was discovered in Arabidopsis as an activator of salicylic acid (SA)-mediated immune responses nearly 30 years ago. How NPR1 confers resistance against a variety of pathogens and stresses has been extensively studied; however, only in recent years have the underlying molecular mechanisms been uncovered, particularly NPR1's role in SA-mediated transcriptional reprogramming, stress protein homeostasis, and cell survival. Structural analyses ultimately defined NPR1 and its paralogs as SA receptors. The SA-bound NPR1 dimer induces transcription by bridging two TGA transcription factor dimers, forming an enhanceosome. Moreover, NPR1 orchestrates its multiple functions through the formation of distinct nuclear and cytoplasmic biomolecular condensates. Furthermore, NPR1 plays a central role in plant health by regulating the crosstalk between SA and other defense and growth hormones. In this review, we focus on these recent advances and discuss how NPR1 can be utilized to engineer resistance against biotic and abiotic stresses.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Salicylic Acid/chemistry , Salicylic Acid/metabolism , Salicylic Acid/pharmacology , Transcription Factors/metabolism , Stress, Physiological , Gene Expression Regulation, Plant
4.
Nature ; 621(7978): 423-430, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37674078

ABSTRACT

Translational reprogramming allows organisms to adapt to changing conditions. Upstream start codons (uAUGs), which are prevalently present in mRNAs, have crucial roles in regulating translation by providing alternative translation start sites1-4. However, what determines this selective initiation of translation between conditions remains unclear. Here, by integrating transcriptome-wide translational and structural analyses during pattern-triggered immunity in Arabidopsis, we found that transcripts with immune-induced translation are enriched with upstream open reading frames (uORFs). Without infection, these uORFs are selectively translated owing to hairpins immediately downstream of uAUGs, presumably by slowing and engaging the scanning preinitiation complex. Modelling using deep learning provides unbiased support for these recognizable double-stranded RNA structures downstream of uAUGs (which we term uAUG-ds) being responsible for the selective translation of uAUGs, and allows the prediction and rational design of translating uAUG-ds. We found that uAUG-ds-mediated regulation can be generalized to human cells. Moreover, uAUG-ds-mediated start-codon selection is dynamically regulated. After immune challenge in plants, induced RNA helicases that are homologous to Ded1p in yeast and DDX3X in humans resolve these structures, allowing ribosomes to bypass uAUGs to translate downstream defence proteins. This study shows that mRNA structures dynamically regulate start-codon selection. The prevalence of this RNA structural feature and the conservation of RNA helicases across kingdoms suggest that mRNA structural remodelling is a general feature of translational reprogramming.


Subject(s)
Codon, Initiator , Nucleic Acid Conformation , RNA, Double-Stranded , RNA, Messenger , Humans , Arabidopsis/genetics , Arabidopsis/immunology , Codon, Initiator/genetics , Innate Immunity Recognition , Open Reading Frames/genetics , Protein Biosynthesis/genetics , Protein Biosynthesis/immunology , Ribosomes/metabolism , RNA, Double-Stranded/chemistry , RNA, Double-Stranded/genetics , RNA, Double-Stranded/metabolism , RNA, Messenger/genetics , Transcriptome , DEAD-box RNA Helicases/chemistry , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Deep Learning
5.
bioRxiv ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37546937

ABSTRACT

In plants, a local infection can lead to systemic acquired resistance (SAR) through increased production of salicylic acid (SA). For 30 years, the identity of the mobile signal and its direct transduction mechanism for systemic SA synthesis in initiating SAR have been hotly debated. We found that, upon pathogen challenge, the cysteine residue of transcription factor CHE undergoes sulfenylation in systemic tissues, enhancing its binding to the promoter of SA-synthesis gene, ICS1, and increasing SA production. This occurs independently of previously reported pipecolic acid (Pip) signal. Instead, H2O2 produced by NADPH oxidase, RBOHD, is the mobile signal that sulfenylates CHE in a concentration-dependent manner. This modification serves as a molecular switch that activates CHE-mediated SA-increase and subsequent Pip-accumulation in systemic tissues to synergistically induce SAR.

6.
bioRxiv ; 2023 May 08.
Article in English | MEDLINE | ID: mdl-37131835

ABSTRACT

Organisms use circadian clocks to synchronize physiological processes to anticipate the Earth's day-night cycles and regulate responses to environmental stresses to gain competitive advantage 1 . While divergent genetic clocks have been studied extensively in bacteria, fungi, plants, and animals, a conserved circadian redox rhythm has only recently been reported and hypothesized to be a more ancient clock 2, 3 . However, it is controversial whether the redox rhythm serves as an independent clock and controls specific biological processes 4 . Here, we uncovered the coexistence of redox and genetic rhythms with distinct period lengths and transcriptional targets through concurrent metabolic and transcriptional time-course measurements in an Arabidopsis long-period clock mutant 5 . Analysis of the target genes indicated regulation of the immune-induced programmed cell death (PCD) by the redox rhythm. Moreover, this time-of-day-sensitive PCD was eliminated by redox perturbation and by blocking the signalling pathway of the plant defence hormones jasmonic acid/ethylene, while remaining intact in a genetic-clock-impaired line. We demonstrate that compared to robust genetic clocks, the more sensitive circadian redox rhythm serves as a signalling hub in regulating incidental energy-intensive processes, such as immune-induced PCD 6 , to provide organisms a flexible strategy to prevent metabolic overload caused by stress, a unique role for the redox oscillator.

7.
Curr Opin Plant Biol ; 73: 102352, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36934653

ABSTRACT

In the past 30 years, our knowledge of how nonexpressor of pathogenesis-related genes 1 (NPR1) serves as a master regulator of salicylic acid (SA)-mediated immune responses in plants has been informed largely by molecular genetic studies. Despite extensive efforts, the biochemical functions of this protein in promoting plant survival against a wide range of pathogens and abiotic stresses are not completely understood. Recent breakthroughs in cellular and structural analyses of NPR1 and its paralogs have provided a molecular framework for reinterpreting decades of genetic observations and have revealed new functions of these proteins. Besides NPR1's well-known nuclear activity in inducing stress-responsive genes, it has also been shown to control stress protein homeostasis in the cytoplasm. Structurally, NPR4's direct binding to SA has been visualized at the molecular level. Analysis of the cryo-EM and crystal structures of NPR1 reveals a bird-shaped homodimer containing a unique zinc finger. Furthermore, the TGA32-NPR12-TGA32 complex has been imaged, uncovering a dimeric NPR1 bridging two TGA3 transcription factor dimers as part of an enhanceosome complex to induce defense gene expression. These new findings will shape future research directions for deciphering NPR functions in plant immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Signal Transduction , Plant Immunity/genetics , Cell Nucleus/metabolism , Plants/metabolism , Transcription Factors/metabolism , Salicylic Acid/metabolism , Gene Expression Regulation, Plant
8.
Cell Host Microbe ; 31(3): 334-342.e5, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36801014

ABSTRACT

The recognition of pathogen effectors by their cognate nucleotide-binding leucine-rich repeat (NLR) receptors activates effector-triggered immunity (ETI) in plants. ETI is associated with correlated transcriptional and translational reprogramming and subsequent death of infected cells. Whether ETI-associated translation is actively regulated or passively driven by transcriptional dynamics remains unknown. In a genetic screen using a translational reporter, we identified CDC123, an ATP-grasp protein, as a key activator of ETI-associated translation and defense. During ETI, an increase in ATP concentration facilitates CDC123-mediated assembly of the eukaryotic translation initiation factor 2 (eIF2) complex. Because ATP is required for the activation of NLRs as well as the CDC123 function, we uncovered a possible mechanism by which the defense translatome is coordinately induced during NLR-mediated immunity. The conservation of the CDC123-mediated eIF2 assembly suggests its possible role in NLR-mediated immunity beyond plants.


Subject(s)
Eukaryotic Initiation Factor-2 , Proteins , Eukaryotic Initiation Factor-2/metabolism , Plants/metabolism , Protein Domains , Adenosine Triphosphate/metabolism , Plant Immunity , Plant Diseases , NLR Proteins/metabolism
9.
Cell Res ; 32(12): 1038-1039, 2022 12.
Article in English | MEDLINE | ID: mdl-35931822
10.
Cell ; 185(17): 3186-3200.e17, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35907403

ABSTRACT

Upon stress, eukaryotes typically reprogram their translatome through GCN2-mediated phosphorylation of the eukaryotic translation initiation factor, eIF2α, to inhibit general translation initiation while selectively translating essential stress regulators. Unexpectedly, in plants, pattern-triggered immunity (PTI) and response to other environmental stresses occur independently of the GCN2/eIF2α pathway. Here, we show that while PTI induces mRNA decapping to inhibit general translation, defense mRNAs with a purine-rich element ("R-motif") are selectively translated using R-motif as an internal ribosome entry site (IRES). R-motif-dependent translation is executed by poly(A)-binding proteins (PABPs) through preferential association with the PTI-activating eIFiso4G over the repressive eIF4G. Phosphorylation by PTI regulators mitogen-activated protein kinase 3 and 6 (MPK3/6) inhibits eIF4G's activity while enhancing PABP binding to the R-motif and promoting eIFiso4G-mediated defense mRNA translation, establishing a link between PTI signaling and protein synthesis. Given its prevalence in both plants and animals, the PABP/R-motif translation initiation module may have a broader role in reprogramming the stress translatome.


Subject(s)
Eukaryotic Initiation Factor-4G , Poly(A)-Binding Proteins , Animals , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factors/metabolism , Poly(A)-Binding Proteins/metabolism , Protein Biosynthesis , Purines , RNA, Messenger/metabolism
11.
Nature ; 605(7910): 561-566, 2022 05.
Article in English | MEDLINE | ID: mdl-35545668

ABSTRACT

NPR1 is a master regulator of the defence transcriptome induced by the plant immune signal salicylic acid1-4. Despite the important role of NPR1 in plant immunity5-7, understanding of its regulatory mechanisms has been hindered by a lack of structural information. Here we report cryo-electron microscopy and crystal structures of Arabidopsis NPR1 and its complex with the transcription factor TGA3. Cryo-electron microscopy analysis reveals that NPR1 is a bird-shaped homodimer comprising a central Broad-complex, Tramtrack and Bric-à-brac (BTB) domain, a BTB and carboxyterminal Kelch helix bundle, four ankyrin repeats and a disordered salicylic-acid-binding domain. Crystal structure analysis reveals a unique zinc-finger motif in BTB for interacting with ankyrin repeats and mediating NPR1 oligomerization. We found that, after stimulation, salicylic-acid-induced folding and docking of the salicylic-acid-binding domain onto ankyrin repeats is required for the transcriptional cofactor activity of NPR1, providing a structural explanation for a direct role of salicylic acid in regulating NPR1-dependent gene expression. Moreover, our structure of the TGA32-NPR12-TGA32 complex, DNA-binding assay and genetic data show that dimeric NPR1 activates transcription by bridging two fatty-acid-bound TGA3 dimers to form an enhanceosome. The stepwise assembly of the NPR1-TGA complex suggests possible hetero-oligomeric complex formation with other transcription factors, revealing how NPR1 reprograms the defence transcriptome.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Cryoelectron Microscopy , Gene Expression Profiling , Gene Expression Regulation, Plant , Plant Immunity , Plant Proteins/metabolism , Salicylic Acid/metabolism , Transcription Factors/metabolism
12.
Curr Opin Immunol ; 75: 102169, 2022 04.
Article in English | MEDLINE | ID: mdl-35168119

ABSTRACT

Upon pathogen challenge, plant cells can mount defense not only by triggering programmed cell death (PCD) to limit pathogen growth, but also by secreting immune signals to activate subsequent organism-scale defense responses. Recent advances in the study of plant immune mechanisms have found that pathogen-induced oligomerization of immune receptors is a common 'on' switch for the normally self-inhibitory proteins. The resulting 'resistosome' triggers PCD through the formation of a calcium channel or a NADase. Synergy between different receptor-mediated signaling pathways appears to be required for sustained immune induction to trigger PCD of infected cells. In the neighboring cells, PCD is inhibited through the production of immune signal salicylic acid (SA) which mediates degradation of PCD-inducing immune components in biomolecular condensates. Future work is required to connect the resistosome-mediated channel formation and the NADase activity to the downstream regulation of immune execution.


Subject(s)
Plant Immunity , Salicylic Acid , Apoptosis , Cell Death , Gene Expression Regulation, Plant , Humans , NAD+ Nucleosidase/metabolism , Plant Proteins , Salicylic Acid/metabolism
13.
Cell Rep ; 34(3): 108645, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33472073

ABSTRACT

Bacterial outer membrane vesicles (OMVs) perform a variety of functions in bacterial survival and virulence. In mammalian systems, OMVs activate immune responses and are exploited as vaccines. However, little work has focused on the interactions of OMVs with plant hosts. Here, we report that OMVs from Pseudomonas syringae and P. fluorescens activate plant immune responses that protect against bacterial and oomycete pathogens. OMV-mediated immunomodulatory activity from these species displayed different sensitivity to biochemical stressors, reflecting differences in OMV content. Importantly, OMV-mediated plant responses are distinct from those triggered by conserved bacterial epitopes or effector molecules alone. Our study shows that OMV-induced protective immune responses are independent of the T3SS and protein, but that OMV-mediated seedling growth inhibition largely depends on proteinaceous components. OMVs provide a unique opportunity to understand the interplay between virulence and host response strategies and add a new dimension to consider in host-microbe interactions.


Subject(s)
Bacterial Outer Membrane Proteins/immunology , Immunity/immunology , Plant Immunity/immunology
14.
Mol Plant ; 13(10): 1358-1378, 2020 10 05.
Article in English | MEDLINE | ID: mdl-32916334

ABSTRACT

After three decades of the amazing progress made on molecular studies of plant-microbe interactions (MPMI), we have begun to ask ourselves "what are the major questions still remaining?" as if the puzzle has only a few pieces missing. Such an exercise has ultimately led to the realization that we still have many more questions than answers. Therefore, it would be an impossible task for us to project a coherent "big picture" of the MPMI field in a single review. Instead, we provide our opinions on where we would like to go in our research as an invitation to the community to join us in this exploration of new MPMI frontiers.


Subject(s)
Circadian Clocks/physiology , Plant Immunity/physiology , Circadian Clocks/genetics , Genetic Heterogeneity , Plant Immunity/genetics
15.
Nature ; 586(7828): 311-316, 2020 10.
Article in English | MEDLINE | ID: mdl-32788727

ABSTRACT

Salicylic acid (SA) is a plant hormone that is critical for resistance to pathogens1-3. The NPR proteins have previously been identified as SA receptors4-10, although how they perceive SA and coordinate hormonal signalling remain unknown. Here we report the mapping of the SA-binding core of Arabidopsis thaliana NPR4 and its ligand-bound crystal structure. The SA-binding core domain of NPR4 refolded with SA adopts an α-helical fold that completely buries SA in its hydrophobic core. The lack of a ligand-entry pathway suggests that SA binding involves a major conformational remodelling of the SA-binding core of NPR4, which we validated using hydrogen-deuterium-exchange mass spectrometry analysis of the full-length protein and through SA-induced disruption of interactions between NPR1 and NPR4. We show that, despite the two proteins sharing nearly identical hormone-binding residues, NPR1 displays minimal SA-binding activity compared to NPR4. We further identify two surface residues of the SA-binding core, the mutation of which can alter the SA-binding ability of NPR4 and its interaction with NPR1. We also demonstrate that expressing a variant of NPR4 that is hypersensitive to SA could enhance SA-mediated basal immunity without compromising effector-triggered immunity, because the ability of this variant to re-associate with NPR1 at high levels of SA remains intact. By revealing the structural mechanisms of SA perception by NPR proteins, our work paves the way for future investigation of the specific roles of these proteins in SA signalling and their potential for engineering plant immunity.


Subject(s)
Arabidopsis/metabolism , Plant Growth Regulators/metabolism , Salicylic Acid/metabolism , Arabidopsis/chemistry , Arabidopsis/immunology , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Crystallography, X-Ray , Deuterium Exchange Measurement , Ligands , Mass Spectrometry , Models, Molecular , Mutation , Plant Growth Regulators/chemistry , Plant Immunity , Protein Binding , Protein Domains/genetics , Salicylic Acid/chemistry , Signal Transduction
16.
Cell ; 182(5): 1093-1108.e18, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32810437

ABSTRACT

In plants, pathogen effector-triggered immunity (ETI) often leads to programmed cell death, which is restricted by NPR1, an activator of systemic acquired resistance. However, the biochemical activities of NPR1 enabling it to promote defense and restrict cell death remain unclear. Here we show that NPR1 promotes cell survival by targeting substrates for ubiquitination and degradation through formation of salicylic acid-induced NPR1 condensates (SINCs). SINCs are enriched with stress response proteins, including nucleotide-binding leucine-rich repeat immune receptors, oxidative and DNA damage response proteins, and protein quality control machineries. Transition of NPR1 into condensates is required for formation of the NPR1-Cullin 3 E3 ligase complex to ubiquitinate SINC-localized substrates, such as EDS1 and specific WRKY transcription factors, and promote cell survival during ETI. Our analysis of SINCs suggests that NPR1 is centrally integrated into the cell death or survival decisions in plant immunity by modulating multiple stress-responsive processes in this quasi-organelle.


Subject(s)
Arabidopsis Proteins/immunology , Arabidopsis Proteins/metabolism , Cell Survival/immunology , Plant Immunity/immunology , Arabidopsis/immunology , Arabidopsis/metabolism , Gene Expression Regulation, Plant/immunology , Salicylic Acid/immunology , Salicylic Acid/metabolism , Ubiquitination/immunology
17.
Mol Plant ; 13(1): 88-98, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31568832

ABSTRACT

Recent studies have shown that global translational reprogramming is an early activation event in pattern-triggered immunity, when plants recognize microbe-associated molecular patterns. However, it is not fully known whether translational regulation also occurs in subsequent immune responses, such as effector-triggered immunity (ETI). In this study, we performed genome-wide ribosome profiling in Arabidopsis upon RPS2-mediated ETI activation and discovered that specific groups of genes were translationally regulated, mostly in coordination with transcription. These genes encode enzymes involved in aromatic amino acid, phenylpropanoid, camalexin, and sphingolipid metabolism. The functional significance of these components in ETI was confirmed by genetic and biochemical analyses. Our findings provide new insights into diverse translational regulation of plant immune responses and demonstrate that translational coordination of metabolic gene expression is an important strategy for ETI.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Plant Immunity/genetics , Transcription Factors/genetics , Arabidopsis/immunology , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Protein Processing, Post-Translational , Pseudomonas syringae/pathogenicity , Signal Transduction , Transcription Factors/metabolism
18.
Proc Natl Acad Sci U S A ; 116(47): 23840-23849, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31676549

ABSTRACT

The plant circadian clock evolved to increase fitness by synchronizing physiological processes with environmental oscillations. Crop fitness was artificially selected through domestication and breeding, and the circadian clock was identified by both natural and artificial selections as a key to improved fitness. Despite progress in Arabidopsis, our understanding of the crop circadian clock is still limited, impeding its rational improvement for enhanced fitness. To unveil the interactions between the crop circadian clock and various environmental cues, we comprehensively mapped abiotic stress inputs to the soybean circadian clock using a 2-module discovery pipeline. Using the "molecular timetable" method, we computationally surveyed publicly available abiotic stress-related soybean transcriptomes to identify stresses that have strong impacts on the global rhythm. These findings were then experimentally confirmed using a multiplexed RNA sequencing technology. Specific clock components modulated by each stress were further identified. This comprehensive mapping uncovered inputs to the plant circadian clock such as alkaline stress. Moreover, short-term iron deficiency targeted different clock components in soybean and Arabidopsis and thus had opposite effects on the clocks of these 2 species. Comparing soybean varieties with different iron uptake efficiencies suggests that phase modulation might be a mechanism to alleviate iron deficiency symptoms in soybean. These unique responses in soybean demonstrate the need to directly study crop circadian clocks. Our discovery pipeline may serve as a broadly applicable tool to facilitate these explorations.


Subject(s)
Circadian Clocks , Glycine max/physiology , Stress, Physiological , Arabidopsis/genetics , Arabidopsis/physiology , Circadian Clocks/genetics , Genes, Plant , Plant Leaves/physiology , Glycine max/genetics
19.
Bio Protoc ; 9(7): e3203, 2019 Apr 05.
Article in English | MEDLINE | ID: mdl-33654999

ABSTRACT

We describe a protocol to measure the contribution of humidity on cell death during the effector-triggered immunity (ETI), the plant immune response triggered by the recognition of pathogen effectors by plant resistance genes. This protocol quantifies tissue cell death by measuring ion leakage due to loss of membrane integrity during the hypersensitive response (HR), the ETI-associated cell death. The method is simple and short enough to handle many biological replicates, which improves the power of test of statistical significance. The protocol is easily applicable to other environmental cues, such as light and temperature, or treatment with chemicals.

20.
Nat Commun ; 9(1): 4290, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30327472

ABSTRACT

Early circadian studies in plants by de Mairan and de Candolle alluded to a regulation of circadian clocks by humidity. However, this regulation has not been described in detail, nor has its influence on physiology been demonstrated. Here we report that, under constant light, circadian humidity oscillation can entrain the plant circadian clock to a period of 24 h probably through the induction of clock genes such as CIRCADIAN CLOCK ASSOCIATED 1. Under simulated natural light and humidity cycles, humidity oscillation increases the amplitude of the circadian clock and further improves plant fitness-related traits. In addition, humidity oscillation enhances effector-triggered immunity at night possibly to counter increased pathogen virulence under high humidity. These results indicate that the humidity oscillation regulates specific circadian outputs besides those co-regulated with the light-dark cycle.


Subject(s)
Arabidopsis/physiology , Circadian Clocks/physiology , Humidity , Arabidopsis/microbiology , Arabidopsis Proteins/genetics , DNA-Binding Proteins/genetics , Gene Expression Regulation, Plant , Mutation , Photoperiod , Plant Immunity , Plants, Genetically Modified , Repressor Proteins/genetics , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...