Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 141
Filter
1.
Article in English | MEDLINE | ID: mdl-39298517

ABSTRACT

Fog collection is a promising solution for mitigating the urgent water shortage around the world. Despite the delicate design of various bionic fog harvesting surfaces with prowess to enable fast fog capture and programmed water transport, achieving sustainable and efficient fog collection by regulating the macroscale surface refreshment efficacy remains rarely concerned yet is effective. Here, we proposed a bioinspired structural design to achieve significant improvement on the surface refreshment efficacy to 46.47%, nearly 5 times larger than that of conventional design. Specifically, we constructed superhydrophilic vein-like microchannels on a superhydrophobic brass surface by using laser texture technology and hydrothermal treatment. Our microchannel design acts as a "highway" for synergically transporting and converging the collected fog droplets, as well as rapidly refreshing large surface area for the subsequent fog collection, reminiscent of the leaf veins responsible for the persistent mass transport between plant tissues. The practical implementation also convinced our design of a maximum water collection efficiency of up to 506.67 mg cm-2 h-1 and a long-term performance stability within a 10 h test. Our design is generic to most of the fog harvesting materials, showing great application potential for efficient atmospheric fog collection.

2.
Front Genet ; 15: 1296797, 2024.
Article in English | MEDLINE | ID: mdl-39036704

ABSTRACT

Objective: Fructose-1,6-bisphosphatase deficiency (FBP1D) is a rare inborn error due to mutations in the FBP1 gene. The genetic spectrum of FBP1D in China is unknown, also nonspecific manifestations confuse disease diagnosis. We systematically estimated the FBP1D prevalence in Chinese and explored genotype-phenotype association. Methods: We collected 101 FBP1 variants from our cohort and public resources, and manually curated pathogenicity of these variants. Ninety-seven pathogenic or likely pathogenic variants were used in our cohort to estimate Chinese FBP1D prevalence by three methods: 1) carrier frequency, 2) permutation and combination, 3) Bayesian framework. Allele frequencies (AFs) of these variants in our cohort, China Metabolic Analytics Project (ChinaMAP) and gnomAD were compared to reveal the different hotspots in Chinese and other populations. Clinical and genetic information of 122 FBP1D patients from our cohort and published literature were collected to analyze the genotype-phenotypes association. Phenotypes of 68 hereditary fructose intolerance (HFI) patients from our previous study were used to compare the phenotypic differences between these two fructose metabolism diseases. Results: The estimated Chinese FBP1D prevalence was 1/1,310,034. In the Chinese population, c.490G>A and c.355G>A had significantly higher AFs than in the non-Finland European population, and c.841G>A had significantly lower AF value than in the South Asian population (all p values < 0.05). The genotype-phenotype association analyses showed that patients carrying homozygous c.841G>A were more likely to present increased urinary glycerol, carrying two CNVs (especially homozygous exon1 deletion) were often with hepatic steatosis, carrying compound heterozygous variants were usually with lethargy, and carrying homozygous variants were usually with ketosis and hepatic steatosis (all p values < 0.05). By comparing to phenotypes of HFI patients, FBP1D patients were more likely to present hypoglycemia, metabolic acidosis, and seizures (all p-value < 0.05). Conclusion: The prevalence of FBP1D in the Chinese population is extremely low. Genetic sequencing could effectively help to diagnose FBP1D.

3.
J Genet Genomics ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002897

ABSTRACT

Facial morphology, a complex trait influenced by genetics, holds great significance in evolutionary research. However, due to limited fossil evidence, the facial characteristics of Neanderthals and Denisovans have remained largely unknown. In this study, we conducted a large-scale multi-ethnic meta-analysis of the genome-wide association study (GWAS), including 9674 East Asians and 10,115 Europeans, quantitatively assessing 78 facial traits using 3D facial images. We identified 71 genomic loci associated with facial features, including 21 novel loci. We developed a facial polygenic score (FPS) that enables the prediction of facial features based on genetic information. Interestingly, the distribution of FPSs among populations from diverse continental groups exhibited relevant correlations with observed facial features. Furthermore, we applied the FPS to predict the facial traits of seven Neanderthals and one Denisovan using ancient DNA and aligned predictions with the fossil records. Our results suggested that Neanderthals and Denisovans likely shared similar facial features, such as a wider but shorter nose and a wider endocanthion distance. The decreased mouth width was characterized specifically in Denisovans. The integration of genomic data and facial trait analysis provides valuable insights into the evolutionary history and adaptive changes in human facial morphology.

4.
Food Chem ; 459: 140298, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39018616

ABSTRACT

Research conducted previously has demonstrated that apoptosis significantly influences the chicken quality. While ROS are acknowledged as significant activators of apoptosis, the precise mechanism by which they influence muscle cell apoptosis in the post-mortem remains unclear. In this study, chicken samples were treated with rosemarinic acid and H2O2 to induce varying ROS levels, and the ROS-triggered apoptosis mechanism in chicken muscle cells in post-mortem was analyzed. The TUNEL results revealed that elevated ROS levels in chicken were associated with a greater degree of muscle cell apoptosis. Western-blot results suggested that sarcoplasmic ROS could initiate apoptosis through the mitochondrial pathway by activating the MAPK-JNK signaling pathway. Moreover, TEM and shear force results demonstrated that muscle cell apoptosis initiates myofiber fragmentation and structural damage to sarcomeres, ultimately reducing chicken tenderness. This study enhances our understanding of post-mortem muscle cell apoptosis, providing valuable insights for regulating chicken quality.


Subject(s)
Apoptosis , Chickens , Reactive Oxygen Species , Animals , Apoptosis/drug effects , Reactive Oxygen Species/metabolism , Meat/analysis , MAP Kinase Signaling System/drug effects , Muscle Cells/metabolism , Muscle Cells/cytology , Postmortem Changes , Muscle, Skeletal/metabolism , Muscle, Skeletal/cytology , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology
5.
Nat Sci Sleep ; 16: 1011-1025, 2024.
Article in English | MEDLINE | ID: mdl-39071545

ABSTRACT

Background: Neonatal sleep is pivotal for their growth and development, yet manual interpretation of raw images is time-consuming and labor-intensive. Quantitative Electroencephalography (QEEG) presents significant advantages in terms of objectivity and convenience for investigating neonatal sleep patterns. However, research on the sleep patterns of healthy neonates remains scarce. This study aims to identify QEEG markers that distinguish between different neonatal sleep cycles and analyze QEEG alterations across various sleep stages in relation to postmenstrual age. Methods: From September 2023 to February 2024, full-term neonates admitted to the neonatology department at the Obstetrics and Gynecology Hospital of Fudan University were enrolled in this study. Electroencephalographic (EEG) recordings were obtained from neonates aged 37-42 weeks, within 1-7 days post-birth. The ROC curve was employed to evaluate QEEG features related to amplitude, range EEG (rEEG), spectral density, and connectivity across different sleep stages. Furthermore, regression analyses were performed to investigate the association between these QEEG characteristics and postmenstrual age. Results: The alpha frequency band's spectral_diff_F3 emerged as the most potent discriminator between active sleep (AS) and quiet sleep (QS). In distinguishing AS from wakefulness (W), the theta frequency's spectral_diff_C4 was the most effective, whereas the delta frequency's spectral_diff_P4 excelled in differentiating QS from W. During AS and QS phases, there was a notable increase in entropy within the delta frequency band across all monitored brain regions and in the spectral relative power within the theta frequency band, correlating with postmenstrual age (PMA). Conclusion: Spectral difference showcases the highest discriminative capability across awake and various sleep states. The observed patterns of neonatal QEEG alterations in relation to PMA are consistent with the maturation of neonatal sleep, offering insights into the prediction and evaluation of brain development outcomes.

6.
Food Chem ; 460(Pt 1): 140386, 2024 Dec 01.
Article in English | MEDLINE | ID: mdl-39029367

ABSTRACT

In promoting healthy diet, developing animal fat substitutes for meat products has been a prominent trend in food science. In this study, Prinsepia utilis Royle protein (PuRP) with amphiphilic property was extracted from waste oil pomace. High internal phase emulsions (HIPEs) were prepared with a 75% oil phase and stabilized with 2% (w/v) PuRP due to their excellent elastic-gel property. Furthermore, the PuRP-HIPEs were used to substitute animal fat in low-fat meatballs. Below 100 mM ionic strength, the uniformly distributed PuRP-HIPEs exhibited an approximate Gaussian size distribution with an average particle size of about 100 µm. The PuRP-HIPEs exhibited good thermodynamic stability and improved the texture of meatballs. Additionally, the PuRP-HIPEs significantly increased the mobile water content in steamed meatballs, resulting in better water retention and distribution than the free-fat and lard-added meatballs. Overall, the PuRP-HIPEs could substitute 100% animal fat in meatballs and maintain their cooking characteristics.


Subject(s)
Emulsions , Fat Substitutes , Meat Products , Emulsions/chemistry , Animals , Meat Products/analysis , Fat Substitutes/chemistry , Fat Substitutes/analysis , Particle Size , Cooking , Plant Proteins/chemistry , Coleoptera/chemistry
7.
Lancet Glob Health ; 12(7): e1192-e1199, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876765

ABSTRACT

Rare diseases affect over 300 million people worldwide and are gaining recognition as a global health priority. Their inclusion in the UN Sustainable Development Goals, the UN Resolution on Addressing the Challenges of Persons Living with a Rare Disease, and the anticipated WHO Global Network for Rare Diseases and WHO Resolution on Rare Diseases, which is yet to be announced, emphasise their significance. People with rare diseases often face unmet health needs, including access to screening, diagnosis, therapy, and comprehensive health care. These challenges highlight the need for awareness and targeted interventions, including comprehensive education, especially in primary care. The majority of rare disease research, clinical services, and health systems are addressed with specialist care. WHO Member States have committed to focusing on primary health care in both universal health coverage and health-related Sustainable Development Goals. Recognising this opportunity, the International Rare Diseases Research Consortium (IRDiRC) assembled a global, multistakeholder task force to identify key barriers and opportunities for empowering primary health-care providers in addressing rare disease challenges.


Subject(s)
Global Health , Primary Health Care , Rare Diseases , Humans , Health Services Accessibility , Primary Health Care/organization & administration , Rare Diseases/therapy , Rare Diseases/epidemiology , World Health Organization , Health Policy
8.
BMC Pediatr ; 24(1): 394, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877528

ABSTRACT

BACKGROUND: The occurrence of severe intraventricular hemorrhage (sIVH) was high in the very preterm infants (VPIs) in China. The management strategies significantly contributed to the occurrence of sIVH in VPIs. However, the status of the perinatal strategies associated with sIVH for VPIs was rarely described across the multiple neonatal intensive care units (NICUs) in China. We aim to investigate the characteristics of the perinatal strategies associated with sIVH for VPIs across the multiple NICUs in China. METHODS: This was a retrospective analysis of data from a prospective cohort of Chinese Neonatal Network (CHNN) dataset, enrolling infants born at 24+0-31+6 from 2019 to 2021. Eleven perinatal practices performed within the first 3 days of life were investigated including antenatal corticosteroids use, antenatal magnesium sulphate therapy, intubation at birth, placental transfusion, need for advanced resuscitation, initial inhaled gas of 100% FiO2 in delivery room, initial invasive respiratory support, surfactant and caffeine administration, early enteral feeding, and inotropes use. The performances of these practices across the multiple NICUs were investigated using the standard deviations of differences between expected probabilities and observations. The occurrence of sIVH were compared among the NICUs. RESULTS: A total of 24,226 infants from 55 NICUs with a mean (SD) gestational age of 29.5 (1.76) and mean (SD) birthweight of 1.31(0.32) were included. sIVH was detected in 5.1% of VPIs. The rate of the antenatal corticosteroids, MgSO4 therapy, and caffeine was 80.0%, 56.4%, and 31.5%, respectively. We observed significant relationships between sIVH and intubation at birth (AOR 1.52, 95% CI 1.13 to 1.75) and initial invasive respiratory support (AOR 2.47, 95% CI 2.15 to 2.83). The lower occurrence of sIVH (4.8%) was observed corresponding with the highest utility of standard antenatal care, the lowest utility of invasive practices, and early enteral feeding administration. CONCLUSIONS: The current evidence-based practices were not performed in each VPI as expected among the studied Chinese NICUs. The higher utility of the invasive practices could be related to the occurrence of sIVH.


Subject(s)
Cerebral Intraventricular Hemorrhage , Intensive Care Units, Neonatal , Female , Humans , Infant, Newborn , Male , Adrenal Cortex Hormones/therapeutic use , Cerebral Intraventricular Hemorrhage/epidemiology , China/epidemiology , East Asian People , Infant, Extremely Premature , Infant, Premature , Infant, Premature, Diseases/epidemiology , Perinatal Care/methods , Retrospective Studies
9.
Stem Cell Res ; 78: 103451, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820866

ABSTRACT

Hereditary fructose intolerance (HFI) is an autosomal recessive metabolic disease associated with a mutation in the aldolase B gene on chromosome 9q31. In this study, we generated a human-induced pluripotent stem cell (hiPSC) line, FDCHi015-A, from peripheral blood mononuclear cells (PBMCs) of a patient carrying the compound heterozygous mutations c.360_364delCAAA and c.1013C > T in exons 4 and 9 of the ALDOB gene, respectively. The iPSCs with the confirmed patient-specific mutation demonstrate pluripotency markers expression, a normal karyotype, and the ability to differentiate into derivatives of three germ layers.


Subject(s)
Induced Pluripotent Stem Cells , Leukocytes, Mononuclear , Mutation , Humans , Induced Pluripotent Stem Cells/metabolism , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/cytology , Fructose-Bisphosphate Aldolase/genetics , Fructose-Bisphosphate Aldolase/metabolism , Cell Line , Cell Differentiation , Male , Karyotype
10.
Inorg Chem ; 63(14): 6276-6284, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38546717

ABSTRACT

Molecules with high point-group symmetry are interesting prototype species in the textbook. As transition metal-centered boron clusters tend to have highly symmetric structures to fulfill multicenter bonding and high stability, new boron clusters with rare point-group symmetry may be viable. Through in-depth scrutiny over the structures of experimentally already observed transition metal-centered boron-wheel complexes, geometric and electronic design principles are summarized, based on which we studied M©B11k- (M = Y, La; Zr, Hf; k = 1, 2) clusters and found that a Y©B112- boron-wheel complex has an unprecedented D11h point-group symmetry. The remarkable stability of the planar Y©B112- complex is illustrated via extensive global-minimum structural search as well as comprehensive chemical bonding analyses. Similar to other boron-wheel complexes, the Y©B112- complex is shown to possess σ and π double aromaticity, indeed following the electronic design principle previously summarized. This new compound is expected to be experimentally identified, which will extend the currently known largest possible planar molecular symmetry and enrich the metal-centered boron-wheel class.

11.
Int J Biol Macromol ; 265(Pt 1): 130713, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471612

ABSTRACT

Rapeseed-derived peptides (RPPs) can maintain the homeostasis of human blood glucose by inhibiting Dipeptidyl Peptidase-IV (DPP-IV) and activating the calcium-sensing receptor (CaSR). However, these peptides are susceptible to hydrolysis in the gastrointestinal tract. To enhance the therapeutic potential of these peptides, we developed a chitosan/sodium alginate-based nanocarrier to encapsulate two RPP variants, rapeseed-derived cruciferin peptide (RCPP) and rapeseed-derived napin peptide (RNPP). A convenient three-channel device was employed to prepare chitosan (CS)/sodium alginate (ALG)-RPPs nanoparticles (CS/ALG-RPPs) at a ratio of 1:3:1 for CS, ALG, and RPPs. CS/ALG-RPPs possessed optimal encapsulation efficiencies of 90.7 % (CS/ALG-RNPP) and 91.4 % (CS/ALG-RCPP), with loading capacities of 15.38 % (CS/ALG-RNPP) and 16.63 % (CS/ALG-RCPP) at the specified ratios. The electrostatic association between CS and ALG was corroborated by zeta potential and near infrared analysis. 13C NMR analysis verified successful RPPs loading, with CS/ALG-RNPP displaying superior stability. Pharmacokinetics showed that both nanoparticles were sustained release and transported irregularly (0.43 < n < 0.85). Compared with the control group, CS/ALG-RPPs exhibited significantly increased glucose tolerance, serum GLP-1 (Glucagon-like peptide 1) content, and CaSR expression which play pivotal roles in glucose homeostasis (*p < 0.05). These findings proposed that CS/ALG-RPPs hold promise in achieving sustained release within the intestinal epithelium, thereby augmenting the therapeutic efficacy of targeted peptides.


Subject(s)
Brassica napus , Chitosan , Nanoparticles , Humans , Chitosan/chemistry , Drug Carriers/chemistry , Delayed-Action Preparations , Brassica napus/metabolism , Alginates/chemistry , Nanoparticles/chemistry , Glucose , Peptides
12.
Cell Discov ; 10(1): 22, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38409116

ABSTRACT

Human cerebellum encompasses numerous neurons, exhibiting a distinct developmental paradigm from cerebrum. Here we conducted scRNA-seq, scATAC-seq and spatial transcriptomic analyses of fetal samples from gestational week (GW) 13 to 18 to explore the emergence of cellular diversity and developmental programs in the developing human cerebellum. We identified transitory granule cell progenitors that are conserved across species. Special patterns in both granule cells and Purkinje cells were dissected multidimensionally. Species-specific gene expression patterns of cerebellar lobes were characterized and we found that PARM1 exhibited inconsistent distribution in human and mouse granule cells. A novel cluster of potential neuroepithelium at the rhombic lip was identified. We also resolved various subtypes of Purkinje cells and unipolar brush cells and revealed gene regulatory networks controlling their diversification. Therefore, our study offers a valuable multi-omics landscape of human fetal cerebellum and advances our understanding of development and spatial organization of human cerebellum.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 311: 123982, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38320470

ABSTRACT

Zinc is a crucial strategic metal resource. The concentration of cobalt ions in zinc refining solution significantly impacts the efficiency of zinc electrolysis production. The traditional method of detecting cobalt ions in zinc solution is time-consuming, labor-intensive and ineffective. However, optical detection offers the advantage of high efficiency and low cost, making it a potential replacement for the traditional method. In this study, the spectral curve of cobalt ions in zinc solution is detected by ultraviolet-visible (UV-Vis) spectrophotometry. Additionally, we propose a model for the concentration-absorbance relationship of cobalt ions in zinc solution based on discrete wavelet transform and extreme gradient boosting (DWT-XGBoost) algorithms. First, the spectral curve's information region is denoised by using Savitzky-Golay (S-G) smoothing. Then, the denoised spectra is utilized to extract features through discrete wavelet transform and principal component analysis. These features are used as inputs to the XGBoost model to establish prediction models for low and high cobalt ions in zinc solution. Bayesian optimization is implemented to adjust the model's hyperparameters, including learning rate, feature sampling ratio, to enhance the prediction performance. Finally, applying the model to zinc solution samples from a zinc smelter and compared with other state-of-the-art algorithms, the DWT-XGBoost algorithm exhibits the lowest RMSE, MAE and MAPE, with values of 0.034 mg/L, 0.025 mg/L, 6.983 % for low cobalt and with values of 0.231 mg/L, 0.067 mg/L and 0.472 % for high cobalt. The experimental results demonstrate that the DWT-XGBoost model exhibits significantly superior prediction performance.

14.
J Genet Genomics ; 51(2): 243-251, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37714454

ABSTRACT

The growth in biomedical data resources has raised potential privacy concerns and risks of genetic information leakage. For instance, exome sequencing aids clinical decisions by comparing data through web services, but it requires significant trust between users and providers. To alleviate privacy concerns, the most commonly used strategy is to anonymize sensitive data. Unfortunately, studies have shown that anonymization is insufficient to protect against reidentification attacks. Recently, privacy-preserving technologies have been applied to preserve application utility while protecting the privacy of biomedical data. We present the PICOTEES framework, a privacy-preserving online service of phenotype exploration for genetic-diagnostic variants (https://birthdefectlab.cn:3000/). PICOTEES enables privacy-preserving queries of the phenotype spectrum for a single variant by utilizing trusted execution environment technology, which can protect the privacy of the user's query information, backend models, and data, as well as the final results. We demonstrate the utility and performance of PICOTEES by exploring a bioinformatics dataset. The dataset is from a cohort containing 20,909 genetic testing patients with 3,152,508 variants from the Children's Hospital of Fudan University in China, dominated by the Chinese Han population (>99.9%). Our query results yield a large number of unreported diagnostic variants and previously reported pathogenicity.


Subject(s)
Data Anonymization , Privacy , Child , Humans , Computational Biology , Genetic Testing , Phenotype
15.
Small ; 20(13): e2307407, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37968835

ABSTRACT

Non-noble metal catalysts are known for their efficient catalytic performance for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). Metal organic gels (MOGs) can be considered as a promising electrocatalyst owing to the diverse physicochemical properties but usually suffer from its poor electrical conductivity and catalytic stability. Here, a FeCo-MOG is constructed with considerable trifunctional activity. The optimal P-CoFe-H3 prepared by using phytic acid (PA) and 2,4,6-Tris[(p-carboxyphenyl)amino]-1,3,5-triazine benzoic acid (H3TATAB) as dual ligands), exhibits outstanding ORR, OER, and HER activities as well as stability, exceeding most of state-of-the-art catalysts. As expected, the flexible Zn-air battery applied with P-CoFe-H3 as air cathode displays considerable power density, discharge voltage plateau, and cycling stability. Impressively, it is also capable of driving the overall water-splitting device by applying the P-CoFe-H3 as anode and cathode. Furthermore, theoretical calculations reveal that dual ligands can optimize the coordination environment and charge density of active sites, thereby reducing the absorption energy of intermediate species and boosting the catalytic performance. This work endows the dual-ligands coordination strategy with great potentiality for MOGs-based electrocatalysts in energy conversion devices.

16.
Int J Pharm ; 649: 123625, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37984618

ABSTRACT

Pulmonary fibrosis is a chronic and progressive disease, current systemic administration is not fully effective with many side effects, such as gastrointestinal and liver injury. The pulmonary delivery system for pulmonary fibrosis may contribute to maximize therapeutic benefit. Natural compounds might have prominence as potential drug candidates, but the low bioavailabilities affect their clinical use. Tetrandrine is a natural alkaloid with good anti-inflammatory, antifibrogenetic and antioxidant effects, and it is used as a clinical therapeutic drug for the treatment of silicosis in China. In the present study, we explore a new strategy of pulmonary delivery system to improve low solubility and pesticide effect of tetrandrine. Tetrandrine was loaded into alginate nanogels by reverse microemulsion method. The release behavior of tetrandrine reached zero-order kinetics release and the maximum free radical clearance rates reached up to 90%. The pulmonary fibrosis rats were treated with tetrandrine nanogels by using ultrasonic atomizing inhalation. Tetrandrine nanogels decreased the development and progression of fibrosis by reducing inflammation response and bating the deposition of extra cellular matrix. In conclusion, ultrasonic atomizing inhalation of tetrandrine nanogels provided a new therapeutic strategy for pulmonary fibrosis.


Subject(s)
Benzylisoquinolines , Pulmonary Fibrosis , Rats , Animals , Pulmonary Fibrosis/drug therapy , Nanogels , Zinc , Alginates
17.
Neonatology ; 121(2): 178-186, 2024.
Article in English | MEDLINE | ID: mdl-38043515

ABSTRACT

INTRODUCTION: Pathogenic variant in the KCNQ2 gene is a common genetic etiology of neonatal convulsion. However, it remains a question in KCNQ2-related disorders that who will develop into atypical developmental outcomes. METHODS: We established a prediction model for the neurodevelopmental outcomes of newborns with seizures caused by KCNQ2 gene defects based on the Gradient Boosting Machine (GBM) model with a training set obtained from the Human Gene Mutation Database (HGMD, public training dataset). The features used in the prediction model were, respectively, based on clinical features only and optimized features. The validation set was obtained from the China Neonatal Genomes Project (CNGP, internal validation dataset). RESULTS: With the HGMD training set, the prediction results showed that the area under the receiver-operating characteristic curve (AUC) for predicting atypical developmental outcomes was 0.723 when using clinical features only and was improved to 0.986 when using optimized features, respectively. In feature importance ranking, both variants pathogenicity and protein functional/structural features played an important role in the prediction model. For the CNGP validation set, the AUC was 0.596 when using clinical features only and was improved to 0.736 when using optimized features. CONCLUSION: In our study, functional/structural features and variant pathogenicity have higher feature importance compared with clinical information. This prediction model for the neurodevelopmental outcomes of newborns with seizures caused by KCNQ2 gene defects is a promising alternative that could prove to be valuable in clinical practice.


Subject(s)
Infant, Newborn, Diseases , KCNQ2 Potassium Channel , Infant, Newborn , Humans , KCNQ2 Potassium Channel/genetics , Seizures/genetics , Mutation , Prognosis
18.
Genome Med ; 15(1): 112, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38093364

ABSTRACT

BACKGROUND: In China, ~1,072,100 small for gestational age (SGA) births occur annually. These SGA newborns are a high-risk population of developmental delay. Our study aimed to evaluate the genetic profile of SGA newborns in the newborn intensive care unit (NICU) and establish a prognosis prediction model by combining clinical and genetic factors. METHODS: A cohort of 723 SGA and 1317 appropriate for gestational age (AGA) newborns were recruited between June 2018 and June 2020. Clinical exome sequencing was performed for each newborn. The gene-based rare-variant collapsing analyses and the gene burden test were applied to identify the risk genes for SGA and SGA with poor prognosis. The Gradient Boosting Machine framework was used to generate two models to predict the prognosis of SGA. The performance of two models were validated with an independent cohort of 115 SGA newborns without genetic diagnosis from July 2020 to April 2022. All newborns in this study were recruited through the China Neonatal Genomes Project (CNGP) and were hospitalized in NICU, Children's Hospital of Fudan University, Shanghai, China. RESULTS: Among the 723 SGA newborns, 88(12.2%) received genetic diagnosis, including 42(47.7%) with monogenic diseases and 46(52.3%) with chromosomal abnormalities. SGA with genetic diagnosis showed higher rates in severe SGA(54.5% vs. 41.9%, P=0.0025) than SGA without genetic diagnosis. SGA with chromosomal abnormalities showed higher incidences of physical and neurodevelopmental delay compared to those with monogenic diseases (45.7% vs. 19.0%, P=0.012). We filtered out 3 genes (ITGB4, TXNRD2, RRM2B) as potential causative genes for SGA and 1 gene (ADIPOQ) as potential causative gene for SGA with poor prognosis. The model integrating clinical and genetic factors demonstrated a higher area under the receiver operating characteristic curve (AUC) over the model based solely on clinical factors in both the SGA-model generation dataset (AUC=0.9[95% confidence interval 0.84-0.96] vs. AUC=0.74 [0.64-0.84]; P=0.00196) and the independent SGA-validation dataset (AUC=0.76 [0.6-0.93] vs. AUC=0.53[0.29-0.76]; P=0.0117). CONCLUSION: SGA newborns in NICU presented with roughly equal proportions of monogenic and chromosomal abnormalities. Chromosomal disorders were associated with poorer prognosis. The rare-variant collapsing analyses studies have the ability to identify potential causative factors associated with growth and development. The SGA prognosis prediction model integrating genetic and clinical factors outperformed that relying solely on clinical factors. The application of genetic sequencing in hospitalized SGA newborns may improve early genetic diagnosis and prognosis prediction.


Subject(s)
Chromosome Aberrations , Intensive Care Units, Neonatal , Child , Infant, Newborn , Humans , Gestational Age , China , Prognosis
19.
Langmuir ; 39(49): 18143-18151, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38037240

ABSTRACT

Fog collection holds promise for addressing water shortage. However, the conventional fabrication of fog collection devices, normally chemical methods, suffers many challenges, such as complicated preparation and environmental issues. Herein, we proposed a green fabrication strategy to construct superhydrophobic/hydrophilic surfaces on the brass substrate via the combination of laser fabrication and heat treatment. The wettability of brass is directly dictated by the laser process parameters. The different superhydrophobic/hydrophilic hybrid pattern surface with a rectangular/triangular array was designed for an optimal fog collection performance. The maximum water collection efficiency of the prepared surface is measured up to 427.36 mg h-1 cm-2, which is 97% higher than that of the control sample. Furthermore, the surface can be folded into different forms to realize a flexible collector. We envision that our work provides a green fabrication strategy to construct a superwetting surface for highly efficient fog collection.

20.
Front Genet ; 14: 1304458, 2023.
Article in English | MEDLINE | ID: mdl-38125748

ABSTRACT

Primary carnitine deficiency (PCD) caused by pathogenic variants in the solute carrier family 22 member 5 (SLC22A5) gene is a rare autosomal recessive disease that results in defective fatty acid oxidation. PCD can be detected through tandem mass spectrometry (MS/MS), but transplacental transport of free carnitine from mothers may cause false negatives or positives during newborn screening (NBS). This study aimed to analyze the genetic characteristics of SLC22A5 and estimate the prevalence of PCD in the Chinese population, providing useful information for NBS and genetic counseling. We manually curated SLC22A5 pathogenic or likely pathogenic (P/LP) variants according to the American College of Medical Genetics and Genomics (ACMG) guidelines and identified 128 P/LP variants. Based on the China Neonatal Genomes Project (CNGP), the estimated PCD prevalence was 1:17,456, which was higher than that in other populations. The genotype-phenotype association analysis showed that patients carrying homozygous c.760C>T and c.844C>T were more likely to present cardiomyopathy, whereas those carrying homozygous c.1400C>G were more likely to be asymptomatic (all p-values < 0.05). We found that there was no significant difference in initial C0 concentrations between patients and carriers, but there was a significant difference in the second-tier screening of C0 concentration between them (p-value < 0.05). We established a cost-effective variant panel containing 10 high-frequency sites and developed a screening algorithm incorporating gene panels with MS/MS, which could rescue one more patient who was undetected from MS/MS. In conclusion, the prevalence of PCD in the Chinese population is relatively high. The combination of conventional NBS with genetic sequencing is suggested for early diagnosis of PCD.

SELECTION OF CITATIONS
SEARCH DETAIL