Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
JACS Au ; 4(9): 3581-3592, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39328752

ABSTRACT

An electrochemically mediated enzyme process for nicotinamide adenine dinucleotide (NADH) oxidation and biosensing has been developed in which the oxygen-dependent activities of wild-type NADH oxidase are replaced by electrochemical regeneration of the flavin adenine dinucleotide (FAD) cofactor in the active site. Consequently, the present bioelectrocatalysis does not rely on a continuous oxygen supply through bubbling air or pure oxygen in biosynthetic applications, which reduces enzyme stability. The coupled electrochemical and enzymatic catalysis is achieved through a combination of enzyme immobilization on the electrode and electrochemical oxidation of FADH2 in the active site mediated by the electron transfer mediator ferrocene carboxylic acid (FcCA). Furthermore, to minimize the effect of dissolved oxygen when the electrocatalytic process is exposed to air, we successfully designed mutations at the Leu40 and Cys42 sites of Leuconostoc mesenteroides (LmNOx) to block the oxygen passage into the active site and to eliminate the native FAD cofactor regeneration half-reaction. The engineered enzymes, whose activities are significantly reduced or inactive in solution, are electrocatalytically active toward conversion of NADH to NAD+, demonstrating successful FAD cofactor regeneration in the active site via electrochemistry. Finally, we developed two highly responsive electrochemical biosensors for NADH detection which has a superior substrate specific to standard detectors using metal electrodes, and comparable detection range and detection limit (1-3 µM).

2.
Biochim Biophys Acta Mol Basis Dis ; 1870(8): 167456, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39122223

ABSTRACT

Myocardial fibroblasts transform into myofibroblasts during the progression of cardiac fibrosis, together with excessive cardiac fibroblast proliferation. Hence, the prevention and treatment of cardiac fibrosis are significant factors for inhibiting the development of heart failure. P-element Induced WImpy testis-interacting RNAs (PiRNA) are widely expressed in the heart, but their involvement in cardiac fibrosis has not yet been confirmed. We identified differentially expressed PiRNAs using Arraystar PiRNA expression profiling in Angiotensin II models of cardiac fibrosis in vivo and in vitro. We then explored cardiac-fibrosis-associated PiRNA-related proteins, RNA-protein interactomes, immunoprecipitation, and pulldown. We detected fibrosis markers and pathway-related proteins using immunofluorescence, qRT-PCR, and Western blot. We uncovered cardiac fibrosis associated PiRNA (CFAPIR) that was obviously dysregulated during cardiac fibrosis, whereas its overexpression reversed fibrosis in vivo and in vitro. Mechanistically, CFAPIR competitively bound muscleblind like protein 2 (MBNL2) and the cyclin-dependent kinase inhibitor P21 to regulate the TGF-ß1/SMAD3 signaling pathway.


Subject(s)
Fibrosis , RNA, Small Interfering , RNA-Binding Proteins , Signal Transduction , Smad3 Protein , Animals , Fibrosis/metabolism , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Mice , RNA, Small Interfering/metabolism , RNA, Small Interfering/genetics , Smad3 Protein/metabolism , Smad3 Protein/genetics , Male , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Myocardium/metabolism , Myocardium/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Mice, Inbred C57BL , Humans , Angiotensin II/pharmacology , Angiotensin II/metabolism , Piwi-Interacting RNA
3.
Seizure ; 121: 176-185, 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39191070

ABSTRACT

Focal cortical dysplasia (FCD) is a structural lesion that is the most common anatomical lesion identified in children, and the second most common in adults with drug-resistant focal-onset epilepsy. These lesions vary in size, location, and histopathological manifestations. FCDs are classified into three subtypes associated with loss-of-function mutations in PI3K/AKT, TSC1/TSC2, RHEB, and DEPDC/NPRL2/NPRL3. During the decades of research into FCD, experimental models have played an irreplaceable role in the research design of studies investigating disease pathogenesis, pathophysiology, and treatment. Further, the establishment of FCD experimental models has moved the field forward by (1) revealing the cellular processes and signaling pathways underlying FCD pathogenesis and (2) varying the methods and materials to study the function of FCD proteins. Currently, FCD experimental models are predominantly murine, with each model providing unique insights into FCD lesions. This review briefly summarizes the pathology and molecular functions of FCD, further comparing the available modeling methods and indexes, as well as the utilization of models, followed by an analysis of the similarities, advantages, and disadvantages between these models and human FCD.

4.
Angew Chem Int Ed Engl ; 63(37): e202408619, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-38924245

ABSTRACT

Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.

5.
AMIA Jt Summits Transl Sci Proc ; 2024: 334-343, 2024.
Article in English | MEDLINE | ID: mdl-38827110

ABSTRACT

Class imbalance issues are prevalent in the medical field and significantly impact the performance of clinical predictive models. Traditional techniques to address this challenge aim to rebalance class proportions. They generally assume that the rebalanced proportions are derived from the original data, without considering the intricacies of the model utilized. This study challenges the prevailing assumption and introduces a new method that ties the optimal class proportions to model complexity. This approach allows for individualized tuning of class proportions for each model. Our experiments, centered on the opioid overdose prediction problem, highlight the performance gains achieved by this approach. Furthermore, rigorous regression analysis affirms the merits of the proposed theoretical framework, demonstrating a statistically significant correlation between hyperparameters controlling model complexity and the optimal class proportions.

6.
Huan Jing Ke Xue ; 45(6): 3584-3594, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897778

ABSTRACT

In order to investigate the effects of ammonium sulfate, an industrial by-product, on soil nutrients and microbial community when applied in different proportions instead of using urea as nitrogen fertilizer, a pot corn experiment was conducted. A completely randomized block experimental design was used, with a total of five treatments:CK (no fertilization), U10S0 (100 % urea), U8S2 (80 % urea + 20 % ammonium sulfate), U6S4(60 % urea + 40 % ammonium sulfate), and U0S10 (100 % ammonium sulfate). The basic physical and chemical properties of soil and the dry weight of maize plants were determined by conventional methods, and microbial sequencing was performed using the Illumina NovaSeq platform. The experiment results showed that:① In each growth stage of maize, the pH of soil treated with fertilization (7.85-8.15) was decreased compared with that of CK (8.1-8.21), and the pH showed a decreasing trend with the increase in ammonium sulfate content. ② The soil available nitrogen content increased gradually with the increase in the ammonium sulfate ratio at each growth stage of maize. Compared with that in the CK and U10S0 treatments, the ratio in the U0S10 treatment increased 30.56 % to 63.68 % and 13.22 % to 38.43 %, respectively. The variation trend of organic carbon content was opposite to that of available nitrogen (U8S2 > U6S4 > U0S10), and the addition of ammonium sulfate was still higher than that of U10S0 at other growth stages except for the seedling stage. ③ The protease activity of all fertilization treatments was higher than that of the control, and the protease activity was gradually enhanced with the continuous growth of corn and the increase in the ammonium sulfate ratio. The protease activity of the U0S10 treatment was higher than that of the U10S0 treatment at each growth stage of corn, which increased by 10.54 %-100 %. Soil sucrase activity ranged from 0.04 to 0.24 mg·(g·24 h)-1, and those in the U0S10 treatments were significantly higher than those in the U10S0 and CK treatments at all growth stages, increasing by 20.32 % to 99.16 % and 24.31 % to 79.33 %, respectively. ④ The species abundance of bacteria and fungi in maize rhizosphere under all fertilization treatments were lower than those under the CK treatment, followed by those under the U10S0 treatment. The species diversity trend of the bacterial community in the three treatments with ammonium sulfate replacing urea were U8S2 > U0S10 > U6S4, and that of fungi were U6S4 > U8S2 > U0S10. ⑤ The maize dry weight of the U10S0 treatment and U0S10 treatment was the highest, which was 39.47 % and 36.16 % higher than that of the CK treatment, respectively, but the difference was not significant. The Pearson model showed that the species abundance and diversity of soil rhizosphere fungi and bacteria were affected by relevant environmental variables, among which pH value and soil available nitrogen content were the most important factors affecting microbial diversity. In conclusion, when corn planting in calcareous brown soil, replacing urea with a certain proportion of ammonium sulfate can improve soil nutrients more than urea alone, which affects the growth and rhizosphere microbial community of corn to a certain extent and has a greater yield.


Subject(s)
Ammonium Sulfate , Fertilizers , Nitrogen , Rhizosphere , Soil Microbiology , Soil , Urea , Zea mays , Zea mays/growth & development , Soil/chemistry , Urea/metabolism , Microbiota/drug effects
7.
Small ; 20(37): e2401060, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38726765

ABSTRACT

3D-printed bioceramic scaffolds offer great potential for bone tissue engineering (BTE) but their inherent brittleness and reduced mechanical properties at high porosities can easily result in catastrophic fractures. Herein, this study presents a hierarchical hydrogel impregnation strategy, incorporating poly(vinyl alcohol) (PVA) hydrogel into the macro- and micropores of bioceramic scaffolds and synergistically reinforcing it via freeze-casting assisted solution substitution (FASS) in a tannic acid (TA)-glycerol solution. By effectively mitigating catastrophic brittle failures, the hydrogel-impregnated scaffolds showcase three- and 100-fold enhancement in mechanical energy absorption under compression (5.05 MJ m-3) and three-point bending (3.82 MJ m-3), respectively. The reinforcement mechanisms are further investigated by experimental and simulation analyses, revealing a multi-scale synergy of fracture and fragmentation resistance through macro and micro-scale fiber bridging, and nano and molecular-scale hydrogel reinforcement. Also, the scaffolds acquire additional antibacterial and drug-loading capabilities from the hydrogel phase while maintaining favorable cell biocompatibility. Therefore, this study demonstrates a facile yet effective approach for preparing brittle-failure-free bioceramic scaffolds with enhanced biological functionalities, showcasing immense potential for BTE applications.


Subject(s)
Ceramics , Hydrogels , Polyvinyl Alcohol , Printing, Three-Dimensional , Tissue Scaffolds , Tissue Scaffolds/chemistry , Ceramics/chemistry , Hydrogels/chemistry , Polyvinyl Alcohol/chemistry , Biocompatible Materials/chemistry , Tissue Engineering/methods , Materials Testing , Porosity
8.
Nat Commun ; 15(1): 3237, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622154

ABSTRACT

Fabrication of composite hydrogels can effectively enhance the mechanical and functional properties of conventional hydrogels. While ceramic reinforcement is common in many hard biological tissues, ceramic-reinforced hydrogels lack a similar natural prototype for bioinspiration. This raises a key question: How can we still attain bioinspired mechanical mechanisms in composite hydrogels without mimicking a specific composition and structure? Abstracting the hierarchical composite design principles of natural materials, this study proposes a hierarchical fabrication strategy for ceramic-reinforced organo-hydrogels, featuring (1) aligned ceramic platelets through direct-ink-write printing, (2) poly(vinyl alcohol) organo-hydrogel matrix reinforced by solution substitution, and (3) silane-treated platelet-matrix interfaces. Unit filaments are further printed into a selection of bioinspired macro-architectures, leading to high stiffness, strength, and toughness (fracture energy up to 31.1 kJ/m2), achieved through synergistic multi-scale energy dissipation. The materials also exhibit wide operation tolerance and electrical conductivity for flexible electronics in mechanically demanding conditions. Hence, this study demonstrates a model strategy that extends the fundamental design principles of natural materials to fabricate composite hydrogels with synergistic mechanical and functional enhancement.

9.
Front Bioeng Biotechnol ; 12: 1383083, 2024.
Article in English | MEDLINE | ID: mdl-38544979

ABSTRACT

Due to the broad application and substantial market demand for proteases, it was vital to explore the novel and efficient protease resources. The aim of this study was to identify the novel protease for tobacco protein degradation and optimize the expression levels. Firstly, the tobacco protein was used as the sole nitrogen resource for isolation of protease-producing strains, and a strain with high protease production ability was obtained, identified as Bacillus velezensis WH-7. Then, the whole genome sequencing was conducted on the strain B. velezensis WH-7, and 7 proteases genes were mined by gene annotation analysis. By further heterologous expression of the 7 protease genes, the key protease HapR was identified with the highest protease activity (144.19 U/mL). Moreover, the catalysis mechanism of HapR was explained by amino acid sequence analysis. The expression levels of protease HapR were further improved through optimization of promoter, signal peptide and host strain, and the maximum protease activity reaced 384.27 U/mL in WX-02/pHY-P43-SPyfkD-hapR, increased by 167% than that of initial recombinant strain HZ/pHY-P43-SPhapR-hapR. This study identified a novel protease HapR and the expression level was significantly improved, which provided an important enzyme resource for the development of enzyme preparations in tobacco protein degradation.

10.
Neurol Sci ; 45(8): 3971-3978, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38488928

ABSTRACT

BACKGROUND: Observational studies have indicated that psychiatric disorders are the most common comorbidities in pediatric epilepsy. However, the existence and direction of a causal relationship between the two remains controversial. This study aims to investigate the association between common childhood psychiatric disorders and epilepsy using a two-sample, bidirectional Mendelian randomization (MR) approach. METHODS: Genetic instruments were obtained from the most recent and largest genome-wide association studies (GWAS), including datasets for epilepsy (N_case = 29,994, N_control = 52,538), attention deficit hyperactivity disorder (ADHD) (N_case = 38,691, N_control = 186,843), autism spectrum disorder (ASD) (N_case = 18,381, N_control = 27,969), and Tourette syndrome (TS) (N_case = 4,819, N_control = 9488). MR analyses were conducted using the inverse variance weighted (IVW) method, weighted median method, and MR-Egger regression. RESULTS: No reliable evidence was found to suggest a causal effect of ADHD, ASD, or TS on epilepsy, nor was there any reliable evidence indicating that epilepsy increases the risk of these three psychiatric disorders. These findings remained consistent across various sensitivity analyses. CONCLUSION: Although observational studies have highlighted a high comorbidity rate between pediatric epilepsy and psychiatric disorders like ADHD and ASD, the MR analysis did not confirm a causal relationship between them. This suggests that previous studies might have been influenced by confounding biases or other biases, potentially overestimating the true relationship. A deeper understanding of the mechanisms underlying these comorbidities is crucial for refining the treatment of pediatric epilepsy.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Epilepsy , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Epilepsy/genetics , Epilepsy/epidemiology , Child , Attention Deficit Disorder with Hyperactivity/genetics , Attention Deficit Disorder with Hyperactivity/epidemiology , Comorbidity , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/epidemiology , Tourette Syndrome/genetics , Tourette Syndrome/epidemiology , Mental Disorders/genetics , Mental Disorders/epidemiology
11.
Front Med (Lausanne) ; 11: 1347152, 2024.
Article in English | MEDLINE | ID: mdl-38533318

ABSTRACT

Background: Evidence from observational studies and clinical trials suggests that the allergic diseases (ADs) are associated with kidney diseases (KDs). However, the causal association between them remains to be determined. We used bidirectional two-sample Mendelian randomization (MR) analysis to evaluate the potential causality between them. Methods: Mendelian randomization (MR) was performed using publicly available genome-wide association study (GWAS) summary datasets. Inverse variance weighted (IVW), weighted median, MR-Egger regression, simple mode, and weighted mode methods are used to evaluate the causality between ADs and KDs. Sensitivity and heterogeneity analyses were used to ensure the stability of the results. Results: The MR results indicated that genetic susceptibility to ADs was associated with a higher risk of CKD [odds ratio (OR) = 1.124, 95% CI = 1.020-1.239, p = 0.019] and unspecified kidney failure (OR = 1.170, 95% CI = 1.004-1.363, p = 0.045) but not with kidney stone, ureter stone or bladder stone (OR = 1.001, 95% CI = 1.000-1.002, p = 0.216), other renal or kidney problem (OR = 1.000, 95% CI = 1.000-1.001, p = 0.339), urinary tract or kidney infection (OR = 1.000, 95% CI = 0.999-1.001, p = 0.604), kidney volume (OR = 0.996, 95% CI = 0.960-1.033, p = 0.812) and cyst of kidney (OR = 0.914, 95% CI = 0.756-1.105, p = 0.354). No causal evidence of KDs on ADs was found in present study. Conclusion: Results from MR analysis indicate a causal association between ADs and CKD and unspecified kidney failure. These findings partly suggest that early monitoring of CKD risk in patients with ADs is intentional.

12.
J Hazard Mater ; 469: 133877, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38452666

ABSTRACT

Nitrosamines are considered carcinogens that threaten human health and environment. Especially, high contents of Tobacco-specific nitrosamines (TSNAs) are generated during the fermentation process of cigar tobacco. To control the accumulation of TSNAs, one novel strain WD-32 was isolated by comprehensively evaluating the reduction characteristics of nitrate, nitrite, and TSNAs, and this strain was identified as Bacillus siamensis by 16 S rRNA gene analysis and MALDI-TOF MS evaluation. Subsequently, whole genome sequencing of B. siamensis WD-32 was carried out to excavate important genes and enzymes involved, and the possible reduction mechanism of TSNAs was explored. More importantly, the reduction of TSNAs by B. siamensis was significantly promoted by knockout of narG gene. During the practical agricultural fermentation process of the cigar tobacco leaves, the treatment by the WD-32∆narG cells resulted in a 60% reduction of the total TSNAs content compared with the control, and the concentrations of the NNN and NNK were decreased by 69% and 59%, respectively. In summary, this study offers efficient strains for reduction of the TSNAs in cigar tobacco, and provides new insights into the reduction mechanism of TSNAs, which will promote the application of microbial methods in control of TSNAs and nitrite.


Subject(s)
Bacillus , Nitrosamines , Humans , Nitrosamines/analysis , Nitrites , Nicotiana/genetics , Carcinogens/analysis , Genetic Engineering
13.
J Affect Disord ; 355: 147-156, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38518856

ABSTRACT

BACKGROUND: Multiple observational studies have reported substantial comorbidity between neuropsychiatric disorders and cardiovascular disease (CVD), but the underlying mechanisms remain largely unknown. METHODS: Using GWAS summary datasets of 8 neuropsychiatric disorders and 6 cardiovascular diseases, an integrative analysis incorporating linkage-disequilibrium-score-regression (LDSC), Mendelian randomization (MR), functional mapping and annotation (FUMA), and functional enrichment analysis, was conducted to investigate shared genetic etiology of the brain-heart axis from the whole genome level, single-nucleotide polymorphism (SNP) level, gene level, and biological pathway level. RESULTS: In LDSC analysis, 18 pairwise traits between neuropsychiatric disorders and CVD were identified with significant genetic overlaps, revealing extensive genome-wide genetic correlations. In bidirectional MR analysis, 19 pairwise traits were identified with significant causal relationships. Genetic liabilities to neuropsychiatric disorders, particularly attention-deficit hyperactivity disorder and major depressive disorder, conferred extensive significant causal effects on the risk of CVD, while hypertension seemed to be a risk factor for multiple neuropsychiatric disorders, with no significant heterogeneity or pleiotropy. In FUMA analysis, 13 shared independent significant SNPs and 887 overlapping protein-coding genes were detected between neuropsychiatric disorders and CVD. With GO and KEEG functional enrichment analysis, biological pathways of the brain-heart axis were highly concentrated in neurotransmitter synaptic transmission, lipid metabolism, aldosterone synthesis and secretion, glutathione metabolism, and MAPK signaling pathway. CONCLUSION: Extensive genetic correlations and genetic overlaps between neuropsychiatric disorders and CVD were identified in this study, which might provide some new insights into the brain-heart axis and the therapeutic targets in clinical practice.


Subject(s)
Cardiovascular Diseases , Depressive Disorder, Major , Hypertension , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Depressive Disorder, Major/genetics , Brain , Causality , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Mendelian Randomization Analysis , Genetic Predisposition to Disease
14.
Mol Genet Genomics ; 299(1): 9, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38374461

ABSTRACT

Currently, the most commonly used method for human identification and kinship analysis in forensic genetics is the detection of length polymorphism in short tandem repeats (STRs) using polymerase chain reaction (PCR) and capillary electrophoresis (CE). However, numerous studies have shown that considerable sequence variations exist in the repeat and flanking regions of the STR loci, which cannot be identified by CE detection. Comparatively, massively parallel sequencing (MPS) technology can capture these sequence differences, thereby enhancing the identification capability of certain STRs. In this study, we used the ForenSeq™ DNA Signature Prep Kit to sequence 58 STRs and 94 individual identification SNPs (iiSNPs) in a sample of 220 unrelated individuals from the Eastern Chinese Han population. Our aim is to obtain MPS-based STR and SNP data, providing further evidence for the study of population genetics and forensic applications. The results showed that the MPS method, utilizing sequence information, identified a total of 486 alleles on autosomal STRs (A-STRs), 97 alleles on X-chromosome STRs (X-STRs), and 218 alleles on Y-chromosome STRs (Y-STRs). Compared with length polymorphism, we observed an increase of 260 alleles (157, 31, and 72 alleles on A-STRs, X-STRs, and Y-STRs, respectively) across 36 STRs. The most substantial increments were observed in DYF387S1 and DYS389II, with increases of 287.5% and 250%, respectively. The most increment in the number of alleles was found at DYF387S1 and DYS389II (287.5% and 250%, respectively). The length-based (LB) and sequence-based (SB) combined random match probability (RMP) of 27 A-STRs were 6.05E-31 and 1.53E-34, respectively. Furthermore, other forensic parameters such as total discrimination power (TDP), cumulative probability of exclusion of trios (CPEtrio), and duos (CPEduo) were significantly improved when using the SB data, and informative data were obtained for the 94 iiSNPs. Collectively, these findings highlight the advantages of MPS technology in forensic genetics, and the Eastern Chinese Han genetic data generated in this study could be used as a valuable reference for future research in this field.


Subject(s)
DNA Fingerprinting , Ethnicity , Humans , DNA Fingerprinting/methods , Ethnicity/genetics , Genetics, Population , Polymorphism, Single Nucleotide/genetics , Microsatellite Repeats/genetics , High-Throughput Nucleotide Sequencing/methods , China , DNA , Sequence Analysis, DNA/methods
15.
World J Pediatr Surg ; 7(1): e000641, 2024.
Article in English | MEDLINE | ID: mdl-38374897

ABSTRACT

Objective: The study aimed to explore the association between the site of interictal epileptic discharges (IEDs) on postoperative electroencephalogram (EEG) and seizure recurrence after antiepileptic drug (AED) withdrawal. The study hypothesizes that the concordance of IED sites with surgical sites indicates incomplete resection of epileptic focus, while non-concordance of IED sites with surgical sites indicates postoperative changes or cortical stimulation. The former has a higher risk of seizure recurrence. Methods: We retrospectively analyzed the postoperative EEG pattern of 182 consecutive children who underwent resection surgery. To identify the risk factors for seizure recurrence, we compared the attributes of seizure recurred and seizure-free groups by univariate and multivariate analyses. AED tapering was standardized, involving a 25% reduction in the dose of a single type of AED every 2 weeks, independent of the presurgical AED load. Results: We attempted AED withdrawal in 116 (63.7%) children. Twenty-eight (24.1%) children experienced seizure recurrence during or after AED withdrawal. A greater number of AEDs used at the time of surgery (p=0.005), incomplete resection (p=0.001), and presence of IED on postoperative EEG (p=0.011) are predictors of seizure recurrence. The completeness of resection and seizure recurrence after AED withdrawal were related to the presence of IED on the EEG, but not to the concordance of IED with surgical sites. Conclusion: For children with abnormal EEG, the decision to discontinue AED should be made more cautiously, regardless of the relative location of the discharge site and the surgical site.

16.
Cancer Lett ; 587: 216730, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38360140

ABSTRACT

Under the sustained exposure to tumor microenvironment, effector lymphocytes may transform into the suppressive populations. γδ T cells are recognized as a crucial mediator and effector of immune surveillance and thereby a promising candidate for anti-tumor immunotherapy. Emerging clinical studies implicate that some γδ T subsets play an important role in promoting tumor progression. Our previous study identified an abnormal Vδ2+ T cells subset with regulatory features (Reg-Vδ2) in the patients with newly diagnosed acute myeloid leukemia (AML), and demonstrated that Reg-Vδ2 cells significantly suppressed the anti-AML effects of effector Vδ2 cells (Eff-Vδ2). The molecular mechanism underlying the subset transformation of Vδ2 cells remains unclear. Here, we found that the expression and activity of STAT5 were significantly induced in Reg-Vδ2 cells compared with Eff-Vδ2 cells, which was consistent with the differences found in primary Vδ2 cells between AML patients and healthy donors. In-vitro experiments further indicated that STAT5 was required for the induction of Reg-Vδ2 cells. The combined immunophenotypical and functional assays showed that blockage of STAT5 alleviated the immunosuppressive effect of Reg-Vδ2 cells on Eff-Vδ2 cells and enhanced the anti-AML capacity of Vδ2 cells from health donors and AML patients. Collectively, these results suggest that STAT5 acts as a critical regulator in the transformation of effector Vδ2 cells into a subset with immunosuppressive characteristics, providing a potential target for the improvement the efficacy of γδ T cells-based immunotherapy to treat AML and other hematologic malignancies.


Subject(s)
Leukemia, Myeloid, Acute , T-Lymphocyte Subsets , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , STAT5 Transcription Factor/metabolism , Tumor Microenvironment
17.
Sci Adv ; 10(5): eadk6643, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38306426

ABSTRACT

Conductive hydrogels have a remarkable potential for applications in soft electronics and robotics, owing to their noteworthy attributes, including electrical conductivity, stretchability, biocompatibility, etc. However, the limited strength and toughness of these hydrogels have traditionally impeded their practical implementation. Inspired by the hierarchical architecture of high-performance biological composites found in nature, we successfully fabricate a robust and sensitive conductive nanocomposite hydrogel through self-assembly-induced bridge cross-linking of MgB2 nanosheets and polyvinyl alcohol hydrogels. By combining the hierarchical lamellar microstructure with robust molecular B─O─C covalent bonds, the resulting conductive hydrogel exhibits an exceptional strength and toughness. Moreover, the hydrogel demonstrates exceptional sensitivity (response/relaxation time, 20 milliseconds; detection lower limit, ~1 Pascal) under external deformation. Such characteristics enable the conductive hydrogel to exhibit superior performance in soft sensing applications. This study introduces a high-performance conductive hydrogel and opens up exciting possibilities for the development of soft electronics.

18.
Sci Adv ; 10(6): eadi7840, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324689

ABSTRACT

Prolonged obstruction of the ureter, which leads to injury of the kidney collecting ducts, results in permanent structural damage, while early reversal allows for repair. Cell structure is defined by the actin cytoskeleton, which is dynamically organized by small Rho guanosine triphosphatases (GTPases). In this study, we identified the Rho GTPase, Rac1, as a driver of postobstructive kidney collecting duct repair. After the relief of ureteric obstruction, Rac1 promoted actin cytoskeletal reconstitution, which was required to maintain normal mitotic morphology allowing for successful cell division. Mechanistically, Rac1 restricted excessive actomyosin activity that stabilized the negative mitotic entry kinase Wee1. This mechanism ensured mechanical G2-M checkpoint stability and prevented premature mitotic entry. The repair defects following injury could be rescued by direct myosin inhibition. Thus, Rac1-dependent control of the actin cytoskeleton integrates with the cell cycle to mediate kidney tubular repair by preventing dysmorphic cells from entering cell division.


Subject(s)
Kidney Tubules, Collecting , Kidney Tubules, Collecting/metabolism , rac1 GTP-Binding Protein/metabolism , Cytoskeleton/metabolism , Actins/metabolism , Actin Cytoskeleton/metabolism
19.
Foods ; 13(2)2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38254563

ABSTRACT

The aim of this study was to understand the changes in nutrient composition and differences in metabolites in Apostichopus japonicus fermented by Bacillus natto and their function in alleviating acute alcohol intoxication (AAI) through in vivo studies. The results showed no significant difference between the basic components of sea cucumber (SC) and fermented sea cucumber (FSC). The SC proteins were degraded after fermentation, and the amino acid content in FSC was significantly increased. The differentially abundant metabolites of SC and FSC were identified by LC-MS/MS. The contents of amino acid metabolites increased after fermentation, and arachidonic acid metabolism was promoted. The results demonstrated that FSC alleviated AAI by improving the activities of alcohol-metabolizing enzymes and antioxidant enzymes in the liver but did not alleviate the accumulation of triglycerides. Our results will provide beneficial information for the development and application of new products from FSC.

20.
Epilepsy Behav ; 151: 109645, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38244419

ABSTRACT

OBJECTIVE: People with epilepsy desire to acquire accurate information about epilepsy and actively engage in its management throughout the long journey of living with seizures. ChatGPT is a large language model and we aimed to assess the accuracy and consistency of ChatGPT in responding to the common concerns of people with epilepsy and to evaluate its ability to provide emotional support. METHODS: Questions were collected from the International League against Epilepsy and the China Association against Epilepsy. The responses were independently assessed by two board-certified epileptologists from the China Association against Epilepsy, and a third reviewer resolved disagreements. The reviewers assessed its ability to provide emotional support subjectively. RESULTS: A total of 378 questions related to epilepsy and 5 questions related to emotional support were included. ChatGPT provided "correct and comprehensive" answers to 68.4% of the questions. The model provided reproducible answers for 82.3% questions. The model performed poorly in answering prognostic questions, with only 46.8% of the answers rated as comprehensive. When faced with questions requiring emotional support, the model can generate natural and understandable responses. SIGNIFICANCE: ChatGPT provides accurate and reliable answers to patients with epilepsy and is a valuable source of information. It also provides partial emotional support, potentially assisting those experiencing emotional distress. However, ChatGPT may provide incorrect responses, leading users to inadvertently accept incorrect and potentially dangerous advice. Therefore, the direct use of ChatGPT for medical guidance is not recommended and its primary use at present is in patients education.


Subject(s)
Epilepsy , Humans , Epilepsy/therapy , Seizures , Certification , China , Language
SELECTION OF CITATIONS
SEARCH DETAIL