Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
BMC Microbiol ; 23(1): 177, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37407923

ABSTRACT

BACKGROUND: The increasing incidence and prevalence of carbapenem-resistant Enterobacter cloacae complex (CREC) poses great challenges to infection prevention and disease treatment. However, much remains unknown about the clinical characteristics of CREC isolates. Our objective was to characterize antimicrobial resistance and, carbapenemase production in CREC with 36 CREC isolates collected from a tertiary hospital in Shandong, China. RESULTS: Three types of carbapenemases (NDM, IMP and VIM) were detected in these isolates. Among them, NDM carbapenemases were most prevalent, with a 61.2% (22/36) detection rate for NDM-1, 27.8% (10/36) for NDM-5 and 2.8% (1/36) for NDM-7. IMP-4 was found in two isolates and VIM-1 in only one isolate. The MLST analysis identified 12 different sequence types (STs), of which ST171 (27.8%) was the most prevalent, followed by ST418 (25.0%). ST171 isolates had significantly higher rates of resistance than other STs to gentamicin and tobramycin (Ps < 0.05), and lower rates of resistance to aztreonam than ST418 and other STs (Ps < 0.05). Among 17 carbapenemase-encoding genes, the blaNDM-5 gene was more frequently detected in ST171 than in ST418 and other isolates (Ps < 0.05). In contrast, the blaNDM-1 gene was more frequently seen in ST418 than in ST171 isolates. One novel ST (ST1965) was identified, which carried the blaNDM-1 gene. CONCLUSION: NDM-5 produced by ST171 and NDM-1 carbapenemase produced by ST418 were the leading cause of CREC in this hospital. This study enhances the understanding of CREC strains and helps improve infection control and treatment in hospitals.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Enterobacteriaceae Infections , Humans , Enterobacter cloacae/genetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenems/pharmacology , Tertiary Care Centers , Multilocus Sequence Typing , Enterobacteriaceae Infections/epidemiology , beta-Lactamases/genetics , Bacterial Proteins/genetics , Carbapenem-Resistant Enterobacteriaceae/genetics , China/epidemiology , Microbial Sensitivity Tests
2.
Eur J Clin Microbiol Infect Dis ; 42(4): 471-480, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36810726

ABSTRACT

The widespread of different NDM variants in clinical Enterobacterales isolates poses a serious public health concern, which requires continuous monitoring. In this study, three E. coli strains carrying two novel blaNDM variants of blaNDM-36, -37 were identified from a patient with refractory urinary tract infection (UTI) in China. We conducted antimicrobial susceptibility testing (AST), enzyme kinetics analysis, conjugation experiment, whole-genome sequencing (WGS), and bioinformatics analysis to characterize the blaNDM-36, -37 enzymes and their carrying strains. The blaNDM-36, -37 harboring E. coli isolates belonged to ST227, O9:H10 serotype and exhibited intermediate or resistance to all ß-lactams tested except aztreonam and aztreonam/avibactam. The genes of blaNDM-36, -37 were located on a conjugative IncHI2-type plasmid. NDM-37 differed from NDM-5 by a single amino acid substitution (His261Tyr). NDM-36 differed from NDM-37 by an additional missense mutation (Ala233Val). NDM-36 had increased hydrolytic activity toward ampicillin and cefotaxime relative to NDM-37 and NDM-5, while NDM-37 and NDM-36 had lower catalytic activity toward imipenem but higher activity against meropenem in comparison to NDM-5. This is the first report of co-occurrence of two novel blaNDM variants in E. coli isolated from the same patient. The work provides insights into the enzymatic function and demonstrates the ongoing evolution of NDM enzymes.


Subject(s)
Escherichia coli Infections , Escherichia coli , Humans , Escherichia coli Infections/microbiology , Aztreonam/pharmacology , beta-Lactamases/genetics , beta-Lactamases/metabolism , Plasmids/genetics , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use
3.
Front Cell Infect Microbiol ; 13: 1327092, 2023.
Article in English | MEDLINE | ID: mdl-38264733

ABSTRACT

Objective: Nontyphoidal Salmonella is a significant public health concern due to its ability to cause foodborne illnesses worldwide. This study aims to characterize the nontyphoidal Salmonella strains isolated from patients in China. Methods: A total of 19 nontyphoidal Salmonella strains were characterized through serovar identification, antimicrobial susceptibility testing (AST), biofilm formation assessment. Genetic relatedness was determined using pulsed-field gel electrophoresis (PFGE). WGS was employed to decipher the resistance mechanism and to contextualize the S. serovar Mbandaka strains among previously sequenced isolates in China. The biofilm associated mrkA gene was examined by PCR. Results: The predominant serovar identified was S. Enteritidis, followed by S. Mbandaka, S. Thompson, S. Livingston, S. Alachua, and S. Infantis. PFGE analysis indicated a notable genetic similarity among the S. Mbandaka isolates. Phylogenetic analysis suggested that these strains were likely derived from a single source that had persisted in China for over five years. One multidrug resistance (MDR) S. Enteritidis isolate carried a highly transferable IncB/O/K/Z plasmid with bla CTX-M-15. One S. Thompson strain, harboring the mrkABCDF operon in an IncX1 plasmid, isolated from cutaneous lesions, demonstrated robust biofilm formation. However, no mrkABCDF loci were detected in other strains. Conclusion: Our study emphasizes the importance of persisted surveillance and prompt response to Salmonella infections to protect public health. The dissemination of bla CTX-M-15-harboring IncB/O/K/Z plasmid and the spread of virulent mrkABCDF operon among Salmonella in China and other global regions warrant close monitoring.


Subject(s)
Salmonella , beta-Lactamases , Humans , Tertiary Care Centers , Serogroup , Phylogeny , China
4.
Front Microbiol ; 12: 759208, 2021.
Article in English | MEDLINE | ID: mdl-34691010

ABSTRACT

Tigecycline serves as one of the last-resort antibiotics to treat severe infections caused by carbapenem-resistant Enterobacterales. Recently, a novel plasmid-mediated resistance-nodulation-division (RND)-type efflux pump gene cluster, TmexCD1-ToprJ1, and its variants, TmexCD2-ToprJ2 and TmexCD3-ToprJ3, encoding tetracyclines and tigecycline resistance, were revealed. In this study, we reported three TmexCD2-ToprJ2-harboring Klebsiella species strains, collected from two teaching tertiary hospitals in China, including one K. quasipneumoniae, one K. variicola, and one K. michiganensis. The three strains were characterized by antimicrobial susceptibility testing (AST), conjugation assay, WGS, and bioinformatics analysis. AST showed that K. variicola and K. quasipneumoniae strains were resistant to tigecycline with MIC values of 4µg/ml, whereas the K. michiganensis was susceptible to tigecycline with an MIC value of 1µg/ml. The TmexCD2-ToprJ2 clusters were located on three similar IncHI1B plasmids, of which two co-harbored the metallo-ß-lactamase gene bla NDM-1. Conjugation experiments showed that all three plasmids were capable of self-transfer via conjugation. Our results showed, for the first time, that this novel plasmid-mediated tigecycline resistance mechanism TmexCD2-ToprJ2 has spread into different Klebsiella species, and clinical susceptibility testing may fail to detect. The co-occurrence of bla NDM-1 and TmexCD2-ToprJ2 in the same plasmid is of particular public health concern as the convergence of "mosaic" plasmids can confer both tigecycline and carbapenem resistance. Its further spread into other clinical high-risk Klebsiella clones will likely exacerbate the antimicrobial resistance crisis. A close monitoring of the dissemination of TmexCD-ToprJ encoding resistance should be considered.

5.
Infect Drug Resist ; 14: 3307-3318, 2021.
Article in English | MEDLINE | ID: mdl-34434054

ABSTRACT

Eggerthella lenta (E. lenta) is a rare but significant human emerging pathogen. Infections caused by it are rare and little-known, both on clinical and therapeutical aspects, in spite of new emergence of bacteria isolation and identification techniques. In this article, we report a case involving a previously healthy 52-year-old man suffering from a newly diagnosed hepatic abscess who developed E. lenta bacteremia, which was treated successfully using empirical therapy with ertapenem and teicoplanin. To the best of our knowledge, this is the first documented report of E. lenta bacteremia related specifically to liver abscess. Cases related to this bacterial species are infrequent and sporadic; thus, we reviewed English literature on E. lenta infection in PubMed/MEDLINE in the last 50 years. A total of 31 sporadic cases were identified. The majority of patients were male (71%), had an average age of 54.3 years and presented predisposing conditions, such as digestive system trouble (45.2%), immunocompromised state (25.8%) or risk factors (22.6%). Two of the cases had more than one predisposing factors. Fever was common (93.5%). Average days to diagnosis of them were 6.8 days. MALDI-TOF MS is emerging as a fast and useful tool in the identification of it. Teicoplanin, vancomycin, amoxicillin-clavulanate, metronidazole, clindamycin, cefoxitin, chloramphenicol, and carbapenems appear to be the most used antibiotic treatment options. The purpose of this review is to increase awareness about the clinical infections caused by E. lenta.

6.
BMC Microbiol ; 21(1): 133, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33932986

ABSTRACT

BACKGROUND: The prevalence of clinical multidrug-resistant (MDR) Pseudomonas aeruginosa has been increasing rapidly worldwide over the years and responsible for a wide range of acute and chronic infections with high mortalities. Although hundreds of complete genomes of clinical P. aeruginosa isolates have been sequenced, only a few complete genomes of mucoid strains are available, limiting a comprehensive understanding of this important group of opportunistic pathogens. Herein, the complete genome of a clinically isolated mucoid strain P. aeruginosa JNQH-PA57 was sequenced and assembled using Illumina and Oxford nanopore sequencing technologies. Genomic features, phylogenetic relationships, and comparative genomics of this pathogen were comprehensively analyzed using various bioinformatics tools. A series of phenotypic and molecular-genetic tests were conducted to investigate the mechanisms of carbapenem resistance in this strain. RESULTS: Several genomic features of MDR P. aeruginosa JNQH-PA57 were identified based on the whole-genome sequencing. We found that the accessory genome of JNQH-PA57 including several prophages, genomic islands, as well as a PAPI-1 family integrative and conjugative element (ICE), mainly contributed to the larger genome of this strain (6,747,067 bp) compared to other popular P. aeruginosa strains (with an average genome size of 6,445,223 bp) listed in Pseudomonas Genome Database. Colony morphology analysis and biofilm crystal staining assay respectively demonstrated an enhanced alginate production and a thicker biofilm formation capability of JNQH-PA57. A deleted mutation at nt 424 presented in mucA gene, resulted in the upregulated expression of a sigma-factor AlgU and a GDP mannose dehydrogenase AlgD, which might explain the mucoid phenotype of this strain. As for the carbapenem resistance mechanisms, our results revealed that the interplay between impaired OprD porin, chromosomal ß-lactamase OXA-488 expression, MexAB-OprM and MexXY-OprM efflux pumps overexpression, synergistically with the alginates-overproducing protective biofilm, conferred the high carbapenem resistance to P. aeruginosa JNQH-PA57. CONCLUSION: Based on the genome analysis, we could demonstrate that the upregulated expression of algU and algD, which due to the truncation variant of MucA, might account for the mucoid phenotype of JNQH-PA57. Moreover, the resistance to carbapenem in P. aeruginosa JNQH-PA57 is multifactorial. The dataset presented in this study provided an essential genetic basis for the comprehensive cognition of the physiology, pathogenicity, and carbapenem resistance mechanisms of this clinical mucoid strain.


Subject(s)
Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Pseudomonas aeruginosa/genetics , Bacterial Proteins/genetics , Carbapenems/pharmacology , Gene Expression Regulation, Bacterial , Genes, Bacterial/genetics , Genomics , Phylogeny , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/classification , Pseudomonas aeruginosa/drug effects , Sequence Deletion
7.
Sheng Wu Gong Cheng Xue Bao ; 35(7): 1266-1276, 2019 Jul 25.
Article in Chinese | MEDLINE | ID: mdl-31328483

ABSTRACT

In a one-step fermentation system of vitamin C production with Gluconobacter oxydans and Ketogulonicigenium vulgare, a functional module of α-lipoic acid biosynthesis was constructed in G. oxydans. The engineered G. oxydans was co-cultured with K. vulgare to enhance the growth and 2-keto-L-gulonic acid (2-KGA) production of K. vulgare. This one-step fermentation system alleviated the growth inhibition during the mono-culture of K. vulgare and strengthened the interaction between the two bacteria. Moreover, the yield of vitamin C precursor (2-KGA) increased to 73.34 g/L (the control group was 59.09 g/L), and the conversion of D-sorbitol to 2-KGA increased to 86.0%. This study provides a new idea for further optimizing the one-step fermentation system of vitamin C production.


Subject(s)
Rhodobacteraceae , Thioctic Acid/biosynthesis , Ascorbic Acid , Fermentation , Gluconobacter oxydans
8.
Biotechnol Lett ; 41(8-9): 951-961, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31278569

ABSTRACT

OBJECTIVES: A three-species consortium for one-step fermentation of 2-keto-L-gulonic acid (2-KGA) was constructed to better strengthen the cell-cell communication. And the programmed cell death module based on the LuxI/LuxR quorum-sensing (QS) system was established in Gluconobacter oxydans to reduce the competition that between G. oxydans and Ketogulonicigenium vulgare. RESULTS: By constructing and optimizing the core region of the promoter, which directly regulated the expression of lethal ccdB genes in QS system, IR3C achieved the best lethal effect. The consortium of IR3C- K. vulgare-Bacillus megaterium (abbreviated as 3C) achieved the highest 2-KGA titer (68.80 ± 4.18 g/l), and the molar conversion rate was 80.7% within 36 h in 5 l fermenter. Metabolomic analysis on intracellular small molecules of consortia 3C and 1C showed that most amino acids (such as glycine, leucine, methionine and proline) and TCA cycle intermediates (such as succinic acid, fumaric acid and malic acid) were significantly affected. These results further validated that the programmed cell death module based on the LuxI/LuxR QS system in G. oxydans could also faciliate better growth and higher production of consortium 3C for one-step fermentation. CONCLUSIONS: We successfully constructed a novel three-species consortia for one-step vitamin C fermentation by strengthening the cell-cell communication. This will be very useful for probing the rational design principles of more complex multi-microbial consortia.


Subject(s)
Ascorbic Acid/metabolism , Bacillus megaterium/metabolism , Fermentation , Gluconobacter oxydans/metabolism , Microbial Consortia , Rhodobacteraceae/metabolism , Sugar Acids/metabolism , Bacillus megaterium/growth & development , Cell Communication , Gluconobacter oxydans/growth & development , Microbial Interactions , Rhodobacteraceae/growth & development , Vitamins/metabolism
9.
J Ind Microbiol Biotechnol ; 46(1): 21-31, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30368638

ABSTRACT

Microbial consortia, with the merits of strong stability, robustness, and multi-function, played critical roles in human health, bioenergy, and food manufacture, etc. On the basis of 'build a consortium to understand it', a novel microbial consortium consisted of Gluconobacter oxydans, Ketogulonicigenium vulgare and Bacillus endophyticus was reconstructed to produce 2-keto-L-gulonic acid (2-KGA), the precursor of vitamin C. With this synthetic consortium, 73.7 g/L 2-KGA was obtained within 30 h, which is comparable to the conventional industrial method. A combined time-series proteomic and metabolomic analysis of the fermentation process was conducted to further investigate the cell-cell interaction. The results suggested that the existence of B. endophyticus and G. oxydans together promoted the growth of K. vulgare by supplying additional nutrients, and promoted the 2-KGA production by supplying more substrate. Meanwhile, the growth of B. endophyticus and G. oxydans was compromised from the competition of the nutrients by K. vulgare, enabling the efficient production of 2-KGA. This study provides valuable guidance for further study of synthetic microbial consortia.


Subject(s)
Ascorbic Acid/metabolism , Metabolomics , Microbial Consortia , Proteomics , Sugar Acids/metabolism , Bacillus/metabolism , Bacterial Proteins/metabolism , Culture Media/chemistry , Fermentation , Gluconobacter oxydans/metabolism , Industrial Microbiology , Rhodobacteraceae/metabolism
10.
Science ; 355(6329)2017 03 10.
Article in English | MEDLINE | ID: mdl-28280152

ABSTRACT

Debugging a genome sequence is imperative for successfully building a synthetic genome. As part of the effort to build a designer eukaryotic genome, yeast synthetic chromosome X (synX), designed as 707,459 base pairs, was synthesized chemically. SynX exhibited good fitness under a wide variety of conditions. A highly efficient mapping strategy called pooled PCRTag mapping (PoPM), which can be generalized to any watermarked synthetic chromosome, was developed to identify genetic alterations that affect cell fitness ("bugs"). A series of bugs were corrected that included a large region bearing complex amplifications, a growth defect mapping to a recoded sequence in FIP1, and a loxPsym site affecting promoter function of ATP2 PoPM is a powerful tool for synthetic yeast genome debugging and an efficient strategy for phenotype-genotype mapping.


Subject(s)
Chromosomes, Artificial, Yeast/chemistry , Chromosomes, Artificial, Yeast/genetics , Genome, Fungal , High-Throughput Nucleotide Sequencing/methods , Physical Chromosome Mapping/methods , Saccharomyces cerevisiae/genetics , Base Sequence , Gene Duplication , Genetic Fitness , Synthetic Biology
11.
J Ind Microbiol Biotechnol ; 44(7): 1031-1040, 2017 07.
Article in English | MEDLINE | ID: mdl-28283955

ABSTRACT

Defect in the amino acid biosynthetic pathways of Ketogulonicigenium vulgare, the producing strain for 2-keto-L-gulonic acid (2-KGA), is the key reason for its poor growth and low productivity. In this study, five different strains were firstly reconstructed by expressing absent genes in threonine, proline and histidine biosynthetic pathways for better 2-KGA productivity. When mono-cultured in the shake flasks, the strain SyBE_Kv02080002 expressing hsk from Gluconobacter oxydans in threonine biosynthetic pathway achieved the highest biomass and the titer increased by 25.13%. When co-cultured with Bacillus endophyticus, the fermentation cycle decreased by 28.57% than that of the original consortium in 5-L fermenter. Furthermore, reconstruction of threonine biosynthetic pathway resulted in up-regulation of genes encoding sorbosone dehydrogenase and idonate-dehydrogenase, which increased the 2-KGA productivity in SyBE_Kv02080002. This study shows that reconstruction of absent biosynthetic pathways in bacteria is an effective way to enhance the productivity of target products.


Subject(s)
Amino Acids/metabolism , Bacillus/metabolism , Biosynthetic Pathways , Gene Expression Regulation, Bacterial , Rhodobacteraceae/metabolism , Sugar Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bioreactors , Culture Media/chemistry , Fermentation , Gluconobacter oxydans/genetics , Gluconobacter oxydans/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Sorbose/analogs & derivatives , Sorbose/metabolism , Up-Regulation
12.
Eng Life Sci ; 17(9): 1021-1029, 2017 Sep.
Article in English | MEDLINE | ID: mdl-32624852

ABSTRACT

Heterologous production of naringenin, a valuable flavonoid with various biotechnological applications, was well studied in the model organisms such as Escherichia coli or Saccharomyces cerevisiae. In this study, a synergistic co-culture system was developed for the production of naringenin from xylose by engineering microorganism. A long metabolic pathway was reconstructed in the co-culture system by metabolic engineering. In addition, the critical gene of 4-coumaroyl-CoA ligase (4CL) was simultaneously integrated into the yeast genome as well as a multi-copy free plasmid for increasing enzyme activity. On this basis, some factors related with fermentation process were considered in this study, including fermented medium, inoculation size and the inoculation ratio of two microbes. A yield of 21.16 ± 0.41 mg/L naringenin was produced in this optimized co-culture system, which was nearly eight fold to that of the mono-culture of yeast. This is the first time for the biosynthesis of naringenin in the co-culture system of S. cerevisiae and E. coli from xylose, which lays a foundation for future study on production of flavonoid.

13.
Microb Cell Fact ; 15: 21, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26809519

ABSTRACT

BACKGROUND: In the industry, the conventional two-step fermentation method was used to produce 2-keto-L-gulonic acid (2-KGA), the precursor of vitamin C, by three strains, namely, Gluconobacter oxydans, Bacillus spp. and Ketogulonicigenium vulgare. Despite its high production efficiency, the long incubation period and an additional second sterilization process inhibit the further development. Therefore, we aimed to reorganize a synthetic consortium of G. oxydans and K. vulgare for one-step fermentation of 2-KGA and enhance the symbiotic interaction between microorganisms to perform better. RESULTS: During the fermentation, competition for sorbose of G. oxydans arose when co-cultured with K. vulgare. In this study, the competition between the two microbes was alleviated and their mutualism was enhanced by deleting genes involved in sorbose metabolism of G. oxydans. In the engineered synthetic consortium (H6 + Kv), the yield of 2-KGA (mol/mol) against D-sorbitol reached 89.7 % within 36 h, increased by 29.6 %. Furthermore, metabolomic analysis was used to verify the enhancement of the symbiotic relationship and to provide us potential strategies for improving the synthetic consortium. Additionally, a significant redistribution of metabolism occurred by co-culturing the K. vulgare with the engineered G. oxydans, mainly reflected in the increased TCA cycle, purine, and fatty acid metabolism. CONCLUSIONS: We reorganized and optimized a synthetic consortium of G. oxydans and K. vulgare to produce 2-KGA directly from D-sorbitol. The yield of 2-KGA was comparable to that of the conventional two-step fermentation. The metabolic interaction between the strains was further investigated by metabolomics, which verified the enhancement of the mutualism between the microbes and gave us a better understanding of the synthetic consortium.


Subject(s)
Ascorbic Acid/metabolism , Fermentation/physiology , Microbial Consortia/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...