Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 245: 120580, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37708778

ABSTRACT

The unprecedented global increase in the anthropogenic-derived nitrogen (N) input may have profound effects on phosphorus (P) dynamics and may potentially lead to enhanced eutrophication as demonstrated in short-term mesocosm experiments. However, the role of N-influenced P release is less well studied in large-scale ecosystems. To gain more insight into ecosystem effects, we conducted a five-year large-scale experiment in ten ponds (700-1000 m2 each) with two types of sediments and five targeted total N concentrations (TN) by adding NH4Cl fertilizer (0.5, 1, 5, 10, and 25 mg N L-1). The results showed that: (ⅰ) The sediment P release increased significantly when TN exceeded 10-25 mg N L-1. (ⅱ) The most pronounced sediment P release increase occurred in summer and from sediments rich in organic matter (OMSed). (ⅲ) TN, algal biomass, fish biomass, non-algal turbidity, sediment pH, and OMSed were the dominant factors explaining the sediment P release, as suggested by piecewise structural equation modeling. We propose several mechanisms that may have stimulated P release, i.e. high ammonium input causes a stoichiometric N:P imbalance and induce alkaline phosphatase production and dissolved P uptake by phytoplankton, leading to enhanced inorganic P diffusion gradient between sediment and water; higher pelagic fish production induced by the higher phytoplankton production may have led increased sediment P resuspension through disturbance; low oxygen level in the upper sediment caused by nitrification and organic decomposition of the settled phytoplankton and, finally, long-term N application-induced sediment acidification as a net effect of ammonium hydrolysis, nitrification, denitrification; The mechanisms revealed by this study shed new light on the complex processes underlying the N-stimulated sediment P release, with implications also for the strategies used for restoring eutrophicated lakes.


Subject(s)
Ammonium Compounds , Lakes , Animals , Lakes/chemistry , Ecosystem , Phosphorus/analysis , Geologic Sediments , Eutrophication , Nitrogen/analysis , China
2.
Mar Pollut Bull ; 174: 113203, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34896755

ABSTRACT

Increased urea is one of the common nitrogen forms polluting coastal waters and affecting nutrient dynamics. To investigate the effects of urea on sediment phosphorus (P) release, we carried out a 2-month mesocosm experiment with six targeted loadings of urea (0-0.6 mg N L-1 d-1). Results showed that: i) urea was rapidly transformed into ammonium and then nitrate (NO3-). ii) When nitrogen occurred as urea or ammonium, minor P release was observed. iii) After urea were mostly converted to NO3-, P release became clearer. iv) NO3- had a dual effect by promoting P release through decreasing sediment pH and increasing alkaline phosphatase activity or by inhibiting P release through improving sediment oxidation. v) The overall effects of urea on P release depended on the ultimate NO3- concentrations, being prominent when NO3- ≥ 11 mg N L-1. Our findings are of relevance when determining nitrogen reduction targets needed for combating eutrophication.


Subject(s)
Phosphorus , Water Pollutants, Chemical , Eutrophication , Geologic Sediments , Nitrogen/analysis , Urea , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL