Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Inherit Metab Dis ; 43(6): 1333-1348, 2020 11.
Article in English | MEDLINE | ID: mdl-32681751

ABSTRACT

Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.


Subject(s)
Congenital Disorders of Glycosylation/genetics , N-Acetylglucosaminyltransferases/deficiency , N-Acetylglucosaminyltransferases/genetics , Spasms, Infantile/genetics , Biomarkers , Child, Preschool , Congenital Disorders of Glycosylation/diagnosis , Diet, Ketogenic , Female , Glycosylation , Humans , Infant , Male , Mutation , N-Acetylglucosaminyltransferases/chemistry , Spasms, Infantile/diagnosis , Transferrin/metabolism
2.
Structure ; 25(5): 708-718.e2, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28392258

ABSTRACT

The mechanosensitive two-pore domain (K2P) K+ channels (TREK-1, TREK-2, and TRAAK) are important for mechanical and thermal nociception. However, the mechanisms underlying their gating by membrane stretch remain controversial. Here we use molecular dynamics simulations to examine their behavior in a lipid bilayer. We show that TREK-2 moves from the "down" to "up" conformation in direct response to membrane stretch, and examine the role of the transmembrane pressure profile in this process. Furthermore, we show how state-dependent interactions with lipids affect the movement of TREK-2, and how stretch influences both the inner pore and selectivity filter. Finally, we present functional studies that demonstrate why direct pore block by lipid tails does not represent the principal mechanism of mechanogating. Overall, this study provides a dynamic structural insight into K2P channel mechanosensitivity and illustrates how the structure of a eukaryotic mechanosensitive ion channel responds to changes in forces within the bilayer.


Subject(s)
Ion Channel Gating , Potassium Channels, Tandem Pore Domain/chemistry , Humans , Lipid Bilayers/chemistry , Mechanotransduction, Cellular , Potassium Channels, Tandem Pore Domain/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL