Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 255: 121486, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38564895

ABSTRACT

This study used a simple mechanical ball milling strategy to significantly improve the ability of Mn2O3 to activate peracetic acid (PAA) for sustainable and efficient degradation of organic micropollutant (like bisphenol A, BPA). BPA was successfully removed and detoxified via PAA activation by the bm-Mn2O3 within 30 min under neutral environment, with the BPA degradation kinetic rate improved by 3.4 times. Satisfactory BPA removal efficiency can still be achieved over a wide pH range, in actual water and after reuse of bm-Mn2O3 for four cycles. The change in hydrophilicity of Mn2O3 after ball milling evidently elevated the affinity of Mn2O3 for binding to PAA, while the reduction in particle size exposed more active sites contributing partially to catalytic oxidation. Further analysis revealed that BPA oxidation in the ball mill-treated Mn2O3 (bm-Mn2O3)/PAA process mainly depends on the bm-Mn2O3-PAA complex (i.e., Mn(III)-OO(O)CCH3) mediated non-radical pathway rather than R-O• and Mn(IV). Especially, the existence of the Mn(III)-PAA complex was definitely verified by in situ Raman spectroscopy and in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Simultaneously, density functional theory calculations determined that PAA adsorbs readily on manganese sites thereby favoring the formation of Mn(III)-OO(O)CCH3 complexes. This study advances an in-depth understanding of the underlying mechanisms involved in the manganese oxide-catalyzed activation of PAA for superior non-radical oxidation of micropollutants.

2.
J Hazard Mater ; 470: 134139, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38555674

ABSTRACT

In this study, the porous carbon material (FeN-BC) with ultra-high catalytic activity was obtained from waste biomass through Fe-N co-doping. The prominent degradation rate (> 96.8%) of naproxen (NAP) was achieved over a wide pH range (pH 3.0-9.0) in FeN-BC/PAA system. Unlike previously reported iron-based peracetic acid (PAA) systems with •OH or RO• as the dominated reactive species, the degradation of contaminants was attributed to singlet oxygen (1O2) produced by organic radicals (RO•) decomposition, which was proved to be thermodynamically feasible and favorable by theoretical calculations. Combining the theoretical calculations, characteristic and experimental analysis, the synergistic effects of Fe and N were proposed and summarized as follows: i) promoted the formation of extensive defects and Fe0 species that facilitated electron transfer between FeN-BC and PAA and continuous Fe(II) generation; ii) modified the specific surface area (SSA) and the isoelectric point of FeN-BC in favor of PAA adsorption on the catalyst surface. This study provides a strategy for waste biomass reuse to construct a heterogeneous catalyst/PAA system for efficient water purification and reveals the synergistic effects of typical metal-heteroatom for PAA activation.


Subject(s)
Biomass , Charcoal , Iron , Peracetic Acid , Water Pollutants, Chemical , Water Purification , Peracetic Acid/chemistry , Charcoal/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods , Nitrogen/chemistry , Naproxen/chemistry , Catalysis , Decontamination/methods , Adsorption
3.
J Hazard Mater ; 423(Pt A): 127054, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34481389

ABSTRACT

Currently, many catalysts are inconvenient to separate from water, and the solvents used in the preparation process are not environmentally friendly, resulting in low recovery efficiency and secondary pollution. In this study, the magnetic and porous regenerated cellulose/carbon nanotubes/Fe3O4 nanoparticles (RC/CNTs/Fe3O4 NPs) composites were synthesized for activation of peroxydisulfate (PDS) in a green alkaline-urea system. The RC/CNTs/Fe3O4 NPs-PDS system achieved 100% removal of bisphenol A compared with CNTs (~64.6%), RC (~0%) or Fe3O4 NPs (~0%), which was closely related to the introduction of defects and functional groups, nitrogen doping and conductive networks. Interestingly, the strong interaction between CNTs and the sheath-like protective layer formed by urea on the cellulose surface promotes the introduction of nitrogen into the composites at the preparation temperature of 70 °C. Moreover, the mechanism of the system was found to be a typical non-radical pathway. Fortunately, there is no leaching of iron ions in the system, and the effects of the actual waterbody, initial pH, and different anions are negligible. The recycling and separation experiments revealed the practicality and superiority of the composite. This work provides a feasible and sustainable strategy for the application of natural cellulose-supported catalysts.


Subject(s)
Nanotubes, Carbon , Benzhydryl Compounds , Cellulose , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...