Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.119
Filter
1.
World J Gastroenterol ; 30(27): 3290-3303, 2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39086751

ABSTRACT

BACKGROUND: The annual incidence of metabolic-associated fatty liver disease (MAFLD) in China has been increasing and is often overlooked owing to its insidious characteristics. Approximately 50% of the patients have a normal weight or are not obese. They are said to have lean-type MAFLD, and few studies of such patients are available. Because MAFLD is associated with abnormal lipid metabolism, lipid-targeted metabolomics was used in this study to provide experimental evidence for early diagnosis and pathogenesis. AIM: To investigate the serum fatty-acid metabolic characteristics in lean-type MAFLD patients using targeted serum metabolomic technology. METHODS: Between January and June 2022, serum samples were collected from MAFLD patients and healthy individuals who were treated at Shanghai Putuo District Central Hospital for serum metabolomics analysis. Principal component analysis and orthogonal partial least squares-discriminant analysis models were developed, and univariate analysis was used to screen for biomarkers of lean-type MAFLD and analyze metabolic pathways. UPLC-Q-Orbitrap/MS content determination was used to determine serum palmitic acid (PA), oleic acid (OA), linoleic acid (LA), and arachidonic acid (AA) levels in lean-type MAFLD patients. RESULTS: Urea nitrogen and uric acid levels were higher in lean-type MAFLD patients than in healthy individuals (P < 0.05). Alanine transaminase and cholinesterase levels were higher in lean-type MAFLD patients than in healthy individuals (P < 0.01). The expression of high-density lipoprotein and apolipoprotein A-1 were lower in lean-type MAFLD patients than in healthy individuals (P < 0.05) and the expression of triglycerides and fasting blood glucose were increased (P < 0.01). A total of 65 biomarkers that affected the synthesis and metabolism of fatty acids were found with P < 0.05 and variable importance in projection > 1". The levels of PA, OA, LA, and AA were significantly increased compared with healthy individuals. CONCLUSION: The metabolic profiles of lean-type MAFLD patients and healthy participants differed significantly, yielding 65 identified biomarkers. PA, OA, LA, and AA exhibited the most significant changes, offering valuable clinical guidance for prevention and treatment of lean-type MAFLD.


Subject(s)
Biomarkers , Fatty Acids , Metabolomics , Non-alcoholic Fatty Liver Disease , Humans , Metabolomics/methods , Male , Female , Middle Aged , Fatty Acids/blood , Fatty Acids/metabolism , Biomarkers/blood , Adult , Non-alcoholic Fatty Liver Disease/blood , Non-alcoholic Fatty Liver Disease/diagnosis , China/epidemiology , Lipid Metabolism , Case-Control Studies , Thinness/blood , Thinness/diagnosis
2.
Int J Biol Sci ; 20(10): 3986-4006, 2024.
Article in English | MEDLINE | ID: mdl-39113711

ABSTRACT

Lymph node (LN) metastasis is the dominant cause of death in bladder cancer (BCa) patients, but the underlying mechanism remains largely unknown. In recent years, accumulating studies have confirmed that bidirectional mitochondria-nucleus communication is essential for sustaining multiple function of mitochondria. However, little has been studied regarding whether and how the translocation of mitochondrial proteins is involved in LN metastasis. In this study, we first identified that the SUMO E3 ligase MUL1 was significantly downregulated in LN-metastatic BCa tissues and correlated with a good prognosis. Mechanistically, MUL1 SUMOylated HSPA9 at the K612 residue, leading to HSPA9 export from mitochondria and interaction with SUZ12 and in the nucleus. Consequently, MUL1 induced the ubiquitination-mediated degradation of SUZ12 and EZH2 and induced downstream STAT3 pathway inhibition in a HSPA9-dependent manner. Importantly, mutation of HSPA9 SUMO-conjugation motifs limited the translocation of mitochondrial HSPA9 and blocked the HSPA9-SUZ12 and HSPA9-EZH2 interactions. With mutation of the HSPA9 K612 site, the suppressive role of MUL1 overexpression was lost in BCa cells. Further in vitro and in vivo assays revealed that MUL1 inhibits the metastasis and proliferation of BCa cells. Overall, our study reveals a novel function and molecular mechanism of SUMO E3 ligases in LN metastasis.


Subject(s)
HSP70 Heat-Shock Proteins , Lymphatic Metastasis , Ubiquitin-Protein Ligases , Urinary Bladder Neoplasms , Urinary Bladder Neoplasms/metabolism , Urinary Bladder Neoplasms/pathology , Urinary Bladder Neoplasms/genetics , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/genetics , Cell Line, Tumor , Mitochondria/metabolism , Animals , Mice , Mice, Inbred BALB C , Mice, Nude , Male , Sumoylation , Female , Mitochondrial Proteins
3.
Cell Commun Signal ; 22(1): 389, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103830

ABSTRACT

Modern human society is burdened with the pandemic of cardiovascular and metabolic diseases. Metrnl is a widely distributed secreted protein in the body, involved in regulating glucose and lipid metabolism and maintaining cardiovascular system homeostasis. In this review, we present the predictive and therapeutic roles of Metrnl in various cardiovascular and metabolic diseases, including atherosclerosis, ischemic heart disease, cardiac remodeling, heart failure, hypertension, chemotherapy-induced myocardial injury, diabetes mellitus, and obesity.


Subject(s)
Biomarkers , Cardiovascular Diseases , Metabolic Diseases , Humans , Metabolic Diseases/metabolism , Metabolic Diseases/drug therapy , Cardiovascular Diseases/metabolism , Biomarkers/metabolism , Animals
4.
Ther Adv Med Oncol ; 16: 17588359241264730, 2024.
Article in English | MEDLINE | ID: mdl-39091606

ABSTRACT

Background: MET overexpression represents the most MET aberration in advanced non-small-cell lung cancer (NSCLC). However, except MET exon 14 (METex14) skipping mutation was recognized as a clinical biomarker, the role of MET overexpression as a predictive factor to MET inhibitor is not clear. Objectives: The purpose of the pooled analysis is to explore the safety and efficiency of gumarontinib, a highly selective oral MET inhibitor, in drive-gene negative NSCLC patients with MET overexpression. Design and methods: NSCLC patients with MET overexpression [immunohistochemistry (IHC) ⩾3+ as determined by central laboratory] not carrying epidermal growth factor receptor mutation, METex14 skipping mutation or other known drive gene alternations who received Gumarontinib 300 mg QD from two single arm studies were selected and pooled for the analysis. The efficacy [objective response rate (ORR), disease control rate (DCR), duration of response, progression-free survival (PFS) and overall survival (OS)] and safety [treatment emergent adverse event (TEAE), treatment related AE (TRAE) and serious AE (SAE) were assessed. Results: A total of 32 patients with MET overexpression were included in the analysis, including 12 treatment naïve patients who refused or were unsuitable for chemotherapy, and 20 pre-treated patients who received ⩾1 lines of prior systemic anti-tumour therapies. Overall, the ORR was 37.5% [95% confidence interval (CI): 21.1-56.3%], the DCR was 81.3% (95% CI: 63.6-92.8%), median PFS (mPFS) and median OS (mOS) were 6.9 month (95% CI: 3.6-9.7) and 17.0 month (95% CI: 10.3-not evaluable), respectively. The most common AEs were oedema (59.4%), hypoalbuminaemia (40.6%), alanine aminotransferase increased (31.3%). Conclusion: Gumarontinib showed promising antitumour activity in driver-gene negative locally advanced or metastatic NSCLC patients with MET overexpression, which warranted a further clinical trial. Trial registration: ClinicalTrials.gov identifier: NCT03457532; NCT04270591.

5.
Microbiol Res ; 287: 127861, 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39094394

ABSTRACT

Understanding of the mechanisms on bacteria-regulated mineral dissolution functions is important for further insight into mineral-microbe interactions. The functions of the two-component system have been studied. However, the molecular mechanisms involved in bacterial two-component system-mediated mineral dissolution are poorly understood. Here, the two-component regulatory system ResS/ResR in the mineral-solubilizing bacterium Pseudomonas pergaminensis F77 was characterized for its involvement in biotite dissolution. Strain F77 and the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants were constructed and compared for the ResS/ResR system-mediated Fe and Al release from biotite in the medium and the mechanisms involved. After 3 days of incubation, the F77ΔresS, F77ΔresR, and F77ΔresS/R mutants significantly decreased the Fe and Al concentrations in the medium compared with F77. The F77ΔresS/R mutant had a greater impact on Fe and Al release from biotite than did the F77ΔresS or F77ΔresR mutant. The F77∆resS/R mutant exhibited significantly reduced Fe and Al concentrations by 21-61 % between 12 h and 48 h of incubation compared with F77. Significantly increased pH values and decreased cell counts on the mineral surfaces were found in the presence of the F77∆resS/R mutant compared with those in the presence of F77 between 12 h and 48 h of incubation. Metabolomic analysis revealed that the extracellular metabolites associated with biotite dissolution were downregulated in the F77ΔresS/R mutant. These downregulated metabolites included GDP-fucose, 20-carboxyleukotriene B4, PGP (16:1(9Z)/16:0), 3',5'-cyclic AMP, and a variety of acidic metabolites involved in carbohydrate, amino acid, and lipid metabolisms, glycan biosynthesis, and cellular community function. Furthermore, the expression levels of the genes involved in the production of these metabolites were downregulated in the F77ΔresS/R mutant compared with those in F77. Our findings suggested that the ResS/ResR system in F77 contributed to mineral dissolution by mediating the production of mineral-solubilizing related extracellular metabolites and bacterial adsorption on mineral surface.

6.
Dalton Trans ; 53(33): 13925-13932, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39099252

ABSTRACT

The design of novel energetic compounds constitutes a pivotal research direction within the field of energetic materials. However, exploring the intricate relationship between their molecular structure and properties, in order to uncover their potential applications, remains a challenging endeavor. Therefore, employing multi-molecule assembly techniques to modulate the structure and performance of energetic materials holds immense significance. This approach enables the creation of a new generation of energetic materials, fueling research and development efforts in this field. In this study, a series of coordination compounds are synthesized by utilizing tetranitroethide (TNE) as an anion, which possesses a high nitrogen and oxygen content. The synthesis involves the synergistic modification between metal ions and small molecule ligands. Characterization of the obtained compounds is carried out using various techniques, including single crystal X-ray diffraction, IR spectroscopy, elemental analysis, and simultaneous TG-DSC analysis. Additionally, the energy of formation for these compounds is calculated using bomb calorimetry, based on the heat of combustion. The detonation performances of the compounds are determined through calculations using the EXPLO 5 software, and their sensitivities to external stimuli are evaluated.

7.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(8): 852-860, 2024 Aug 15.
Article in Chinese | MEDLINE | ID: mdl-39148391

ABSTRACT

OBJECTIVES: To investigate the effect of reactive oxygen species (ROS)/silent information regulator 1 (SIRT1) on hyperoxia-induced mitochondrial injury in BEAS-2B cells. METHODS: The experiment was divided into three parts. In the first part, cells were divided into H0, H6, H12, H24, and H48 groups. In the second part, cells were divided into control group, H48 group, H48 hyperoxia+SIRT1 inhibitor group (H48+EX 527 group), and H48 hyperoxia+SIRT1 agonist group (H48+SRT1720 group). In the third part, cells were divided into control group, 48-hour hyperoxia+N-acetylcysteine group (H48+NAC group), and H48 group. The ROS kit was used to measure the level of ROS. Western blot and immunofluorescent staining were used to measure the expression levels of SIRT1 and mitochondria-related proteins. Transmission electron microscopy was used to observe the morphology of mitochondria. RESULTS: Compared with the H0 group, the H6, H12, H24, and H48 groups had a significantly increased fluorescence intensity of ROS (P<0.05), the H48 group had significant reductions in the expression levels of SIRT1 protein and mitochondria-related proteins (P<0.05), and the H24 and H48 groups had a significant reduction in the fluorescence intensity of mitochondria-related proteins (P<0.05). Compared with the H48 group, the H48+SRT1720 group had significant increases in the expression levels of mitochondria-related proteins and the mitochondrial aspect ratio (P<0.05), and the H48+EX 527 group had a significant reduction in the mitochondrial area (P<0.05). Compared with the H48 group, the H48+NAC group had a significantly decreased fluorescence intensity of ROS (P<0.05) and significantly increased levels of SIRT1 protein, mitochondria-related proteins, mitochondrial area, and mitochondrial aspect ratio (P<0.05). CONCLUSIONS: The ROS/SIRT1 axis is involved in hyperoxia-induced mitochondrial injury in BEAS-2B cells.


Subject(s)
Bronchi , Epithelial Cells , Hyperoxia , Reactive Oxygen Species , Sirtuin 1 , Sirtuin 1/metabolism , Sirtuin 1/physiology , Sirtuin 1/genetics , Humans , Reactive Oxygen Species/metabolism , Hyperoxia/complications , Hyperoxia/metabolism , Epithelial Cells/metabolism , Bronchi/metabolism , Mitochondria/metabolism , Cells, Cultured , Cell Line
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124956, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39151398

ABSTRACT

A new and rare Salamo-Co(II) complex probe L-Co2+ was designed and synthesised. The structure of the [Co3(L)2(µ-OAc)2(MeOH)2]⋅2H2O complex was obtained by X-ray diffraction experiments. Three Co(II) atoms are in a line in the complex, and all Co(II) atoms form a 6-coordinated octahedral configuration. The probe L-Co2+ selectively recognises tyrosine in DMF/H2O (8:2, v/v). Upon addition of tyrosine, the fluorescence intensity of L-Co2+ was enhanced in a short time. The probe showed high selectivity and sensitivity for tyrosine, detection limit is 4.27 × 10-8 M. The recognition mechanism of probe L-Co2+ for Tyr was inferred by FT-IR spectra, UV spectroscopy, ESI mass spectra and DFT calculations. Finally, due to the simplicity and specificity of the identification process, the probe was also subjected to a test paper experiment and a milk assay.

9.
Sci Total Environ ; 949: 174990, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39094640

ABSTRACT

Plants are known for their significant dust retention capacity and are widely used to alleviate atmospheric pollution. Urban green plants are exposed to periodic particulate matter pollution stress, and the time intervals between periods of pollution exposure are often inconsistent. The impact of stress memory and pollution intervals on plant dust retention capacity and physiological characteristics during periodic stress is not yet clear. In this study, the common urban landscaping species Nerium oleander L. was selected as the test plant, and stable isotope (15NH4Cl) tracing technology and aerosol generators were used to simulate periodic PM2.5 pollution. This study included two particulate pollution periods (each lasting 14 days) and one recovery period with three different durations (7, 14, and 21 days). The results indicated that periodic particulate matter pollution-induced stress decreased the dust retention capacity of N. oleander leaf surfaces, but particle adsorption to the wax layer was more stable. As the duration of the recovery period increased, leaf particle absorption, which accounted for the greatest proportion of total dust retention, increased, indicating that leaves are the primary organ for dust retention in Nerium oleander L. Root absorption also increased with increasing recovery periods. Prior pollution stress increased oleander physiological and morphological responses, and the plant's air pollution tolerance significantly improved after a recovery period of >14 days.


Subject(s)
Air Pollutants , Dust , Nerium , Particulate Matter , Air Pollutants/analysis , Dust/analysis , Particulate Matter/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring , Plant Leaves
10.
J Natl Cancer Cent ; 4(1): 6-13, 2024 Mar.
Article in English | MEDLINE | ID: mdl-39036384

ABSTRACT

Renal cancer is one of the most common malignancies of the urinary system, and the number of deaths continues to increase. The standardized management of the diagnosis and treatment of renal cancer is challenging due to the great differences in the diagnosis and treatment of renal cancer in different regions. The Renal Cancer Expert Committee of the National Cancer Quality Control Center (NCQCC) identified a lack of authoritative quality control standards as an opportunity to utilize its multidisciplinary membership to improve the standardized diagnosis and treatment of renal cancer. The Renal Cancer Expert Committee of the NCQCC aims to promote quality control and national standardization, uniformity, and normalization of renal cancer diagnosis and treatment, which ultimately improved the survival rate and quality of life of renal cancer patients. A panel of experts with renal cancer surgery, renal cancer medicine, medical imaging, pathology and radiotherapy were drawn together and determined the quality control standards for the standardized diagnosis and treatment of renal cancer. The Indices includes 20 items that cover all key areas in the diagnosis and treatment of renal cancer, such as standard diagnosis, surgery treatment, systemic treatment, and prognostic evaluation.

11.
Small ; : e2404622, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39058229

ABSTRACT

Inspired by natural photosynthesis, the visible-light-driven Z-scheme system is very effective and promising for boosting photocatalytic hydrogen production and pollutant degradation. Here, a synergistic Z-scheme photocatalyst is constructed by coupling ReS2 nanosheet and ZnIn2S4 nanoflower and the experimental evidence for this direct Z-scheme heterostructure is provided by X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and electron paramagnetic resonance. Consequently, such a unique nanostructure makes this Z-scheme heterostructure exhibit 23.7 times higher photocatalytic hydrogen production than that of ZnIn2S4 nanoflower. Moreover, the ZnIn2S4/ReS2 photocatalyst is also very stable for photocatalytic hydrogen evolution, almost without activity decay even storing for two weeks. Besides, this Z-scheme heterostructure also exhibits superior photocatalytic degradation rates of methylene blue (1.7 × 10-2 min-1) and mitoxantrone (4.2 × 10-3 min-1) than that of ZnIn2S4 photocatalyst. The ultraviolet-visible absorption spectra, transient photocurrent spectra, open-circuit potential measurement, and electrochemical impedance spectroscopy reveal that the superior photocatalytic performance of ZnIn2S4/ReS2 heterostructure is mostly attributed to its broad and strong visible-light absorption, effective separation of charge carrier, and improved redox ability. This work provides a promising nanostructure design of a visible-light-driven Z-scheme heterostructure to simultaneously promote photocatalytic reduction and oxidation activity.

12.
Sci Rep ; 14(1): 15994, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987328

ABSTRACT

Mitigating pre-harvest sprouting (PHS) and post-harvest food loss (PHFL) is essential for enhancing food securrity. To reduce food loss, the use of plant derived specialized metabolites can represent a good approach to develop a more eco-friendly agriculture. Here, we have discovered that soybean seeds hidden underground during winter by Tscherskia triton and Apodemus agrarius during winter possess a higher concentration of volatile organic compounds (VOCs) compared to those remaining exposed in fields. This selection by rodents suggests that among the identified volatiles, 3-FurAldehyde (Fur) and (E)-2-Heptenal (eHep) effectively inhibit the growth of plant pathogens such as Aspergillus flavus, Alternaria alternata, Fusarium solani and Pseudomonas syringae. Additionally, compounds such as Camphene (Cam), 3-FurAldehyde, and (E)-2-Heptenal, suppress the germination of seeds in crops including soybean, rice, maize, and wheat. Importantly, some of these VOCs also prevent rice seeds from pre-harvest sprouting. Consequently, our findings offer straightforward and practical approaches to seed protection and the reduction of PHS and PHFL, indicating potential new pathways for breeding, and reducing both PHS and pesticide usage in agriculture.


Subject(s)
Agriculture , Glycine max , Seeds , Volatile Organic Compounds , Seeds/microbiology , Seeds/growth & development , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacology , Animals , Glycine max/microbiology , Glycine max/growth & development , Agriculture/methods , Germination , Crops, Agricultural/microbiology , Crops, Agricultural/growth & development , Rodentia/microbiology
13.
Adv Sci (Weinh) ; : e2404230, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984451

ABSTRACT

Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor and known for its challenging prognosis. Sonodynamic therapy (SDT) is an innovative therapeutic approach that shows promise in tumor elimination by activating sonosensitizers with low-intensity ultrasound. In this study, a novel sonosensitizer is synthesized using Cu-doped carbon dots (Cu-CDs) for the sonodynamic treatment of GBM. Doping with copper transforms the carbon dots into a p-n type semiconductor having a bandgap of 1.58 eV, a prolonged lifespan of 10.7 µs, and an improved electron- and hole-separation efficiency. The sonodynamic effect is efficiency enhanced. Western blot analysis reveals that the Cu-CDs induces a biological response leading to cell death, termed as cuproptosis. Specifically, Cu-CDs upregulate dihydrosulfanyl transacetylase expression, thereby establishing a synergistic therapeutic effect against tumor cell death when combined with SDT. Furthermore, Cu-CDs exhibit excellent permeability through the blood-brain barrier and potent anti-tumor activity. Importantly, the Cu-CDs effectively impede the growth of glioblastoma tumors and prolong the survival of mice bearing these tumors. This study provides support for the application of carbon-based nanomaterials as sonosensitizers in tumor therapy.

14.
ChemSusChem ; : e202401109, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984507

ABSTRACT

The direct synthesis of 1,2-pentanediol (1,2-PeD) from renewable xylose and its derivatives derived from hemicellulose is appealing yet challenging due to its low selectivity for the target product. In this study, one-pot catalytic conversion of xylose to 1,2-PeD was performed by using nitrogen-doped carbon (NC) supported Pt catalysts with the assistance of organic acids. A remarkable yield of 49.3% for 1,2-PeD was achieved by reacting 0.1869 g xylose in 30 mL water at 200 °C under a hydrogen pressure of 3 MPa for 8 h in the presence of 0.1 g of 2.5Pt/NC600 catalyst and 0.1869 g propanoic acid co-catalyst. The presence of vicinal Pt-acid pair sites on the surface of the 2.5Pt/NC600 catalyst exhibited a synergistic effect in promoting the hydrogenation of furfural to furfuryl alcohol intermediate and subsequent hydrogenation and ring-opening reactions leading to the formation of 1,2-PeD. The addition of organic acids, may serve as both acid catalyst for dehydration of xylose and hydrogen donor for hydrogenation of furfural and furfuryl alcohol, thereby promoting the one-pot conversion of xylose to 1,2-PeD. Remarkably, the 2.5Pt/NC600 catalyst demonstrated outstanding catalytic performance and good reusability over five consecutive cycles without significant deactivation.

15.
Talanta ; 279: 126574, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39029179

ABSTRACT

The group B Streptococcus (GBS) can generate vertical transmission to infants during delivery, has been seriously threatening the health of infants. Rapid and accurate prenatal GBS diagnosis for pregnant women is a deterministic blueprint to avoid infant viruses. Here, we developed an extraction-free nucleic acid isothermal amplification/CRISPR-Cas12a cutting one-pot system for GBS diagnostic assay by using suboptimal protospacer adjacent motifs, effectively avoiding multiple handling steps and uncapping contamination. The GBS diagnosis assay based on a one-pot system was validated by using fluorescent technique and lateral flow assay strips, exhibited fantastic specificity, accuracy and sensitivity with a limit of detection of 32 copies per reaction (0.64 copies/µL). Moreover, a portable device was constructed and integrated with the one-pot system to realize the GBS detection without professional and scene restrictions, it showed excellent performance in clinical sample detection, which achieved optical and portable GBS detection for point-of-care testing or home-self testing.

16.
Front Immunol ; 15: 1371379, 2024.
Article in English | MEDLINE | ID: mdl-38881888

ABSTRACT

SMARCA4-deficient undifferentiated tumor (SMARCA4-dUT) is a devastating subtype of thoracic tumor with SMARCA4 inactivation and is characterized by rapid progression, poor prognosis, and high risk of postoperative recurrence. However, effective treatments for SMARCA4-dUT are lacking. Herein, we describe a patient with SMARCA4-dUT who exhibited an impressive response to the anti-programmed cell death protein-1 (PD-1) antibody (tislelizumab) in combination with conventional chemotherapy (etoposide and cisplatin). To the best of our knowledge, this is the first case of SMARCA4-dUT treated with chemotherapy, comprising etoposide and cisplatin, combined with anti-PD-1 inhibitors. Immunotherapy combined with etoposide and cisplatin may be a promising strategy to treat SMARCA4-dUT.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , DNA Helicases , Transcription Factors , Humans , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , DNA Helicases/genetics , DNA Helicases/deficiency , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Transcription Factors/genetics , Nuclear Proteins/genetics , Nuclear Proteins/deficiency , Etoposide/therapeutic use , Etoposide/administration & dosage , Male , Cisplatin/therapeutic use , Cisplatin/administration & dosage , Treatment Outcome , Female
17.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1283-1292, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886427

ABSTRACT

To investigate the effects of different irrigation and nitrogen application modes on nitrogen gaseous loss in winter wheat farmland, we conducted a field experiment at Changqing Irrigation Experiment Station in Shandong Province, with two irrigation levels (80%-90% θf(I1) and 70%-80% θf(I2)) and three nitrogen application levels (conventional nitrogen application of 240 kg·hm-2(N1), nitrogen reduction of 12.5% (N2), and nitrogen reduction of 25% (N3)). The results showed that ammonia volatilization and nitrous oxide emission rate peak appeared within 2-4 days after fertilization or irrigation. The ammonia volatilization rate during the chasing fertilizer period was significantly higher than that during the basal fertilizer period. Compared with other treatments, the ave-rage ammonia volatilization rate of I2N2 treatment during the chasing fertilizer period was reduced by 10.1%-51.6%, and the average nitrous oxide emission rate over the whole growth period was reduced by 15.4%-52.2%. The ammonia volatilization rate was significantly positively associated with surface soil pH value and ammonium nitrogen content, while the nitrous oxide emission rate was significantly positively associated with nitrate content in topsoil. The accumulation amount of soil ammonia volatilization and nitrous oxide emission ranged from 0.83-1.42 and 0.11-0.33 kg·hm-2, respectively. Moderate reduction of irrigation water and nitrogen input could effectively reduce cumulative amounts of ammonia volatilization and nitrous oxide emission from winter wheat farmland. The cumulative amounts of ammonia volatilization and nitrous oxide emission under I1N3 and I2N2 treatments were signi-ficantly lower than those under other treatments. The highest winter wheat yield (5615.6 kg·hm-2) appeared in I2N2 treatment. The irrigation water utilization efficiency of I2 was significantly higher than that of I1, with the maximum increase rate of 45.2%. Compared with N1 and N3 treatments, the maximum increase rate of nitrogen fertilizer productivity and agricultural utilization efficiency in N2 reached 15.2% and 31.8%, respectively. In conclusion, the treatment with 70%-80% θf irrigation level and 210 kg·hm-2 nitrogen input could effectively improve the utilization efficiency of irrigation water and nitrogen fertilization and reduce gaseous loss from winter wheat farmland.


Subject(s)
Ammonia , Fertilizers , Nitrogen , Nitrous Oxide , Triticum , Water , Triticum/growth & development , Triticum/metabolism , Nitrous Oxide/analysis , Nitrous Oxide/metabolism , Nitrogen/analysis , Nitrogen/metabolism , Ammonia/analysis , Ammonia/metabolism , China , Water/analysis , Water/metabolism , Agricultural Irrigation/methods , Seasons , Biomass , Soil/chemistry
18.
JMIR Public Health Surveill ; 10: e53860, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38829691

ABSTRACT

BACKGROUND: As one of the leading causes of child mortality, deaths due to congenital anomalies (CAs) have been a prominent obstacle to meet Sustainable Development Goal 3.2. OBJECTIVE: We conducted this study to understand the death burden and trend of under-5 CA mortality (CAMR) in Zhejiang, one of the provinces with the best medical services and public health foundations in Eastern China. METHODS: We used data retrieved from the under-5 mortality surveillance system in Zhejiang from 2012 to 2021. CAMR by sex, residence, and age group for each year was calculated and standardized according to 2020 National Population Census sex- and residence-specific live birth data in China. Poisson regression models were used to estimate the annual average change rate (AACR) of CAMR and to obtain the rate ratio between subgroups after adjusting for sex, residence, and age group when appropriate. RESULTS: From 2012 to 2021, a total of 1753 children died from CAs, and the standardized CAMR declined from 121.2 to 62.6 per 100,000 live births with an AACR of -9% (95% CI -10.7% to -7.2%; P<.001). The declining trend was also observed in female and male children, urban and rural children, and neonates and older infants, and the AACRs were -9.7%, -8.5%, -8.5%, -9.2%, -12%, and -6.3%, respectively (all P<.001). However, no significant reduction was observed in children aged 1-4 years (P=.22). Generally, the CAMR rate ratios for male versus female children, rural versus urban children, older infants versus neonates, and older children versus neonates were 1.18 (95% CI 1.08-1.30; P<.001), 1.20 (95% CI 1.08-1.32; P=.001), 0.66 (95% CI 0.59-0.73; P<.001), and 0.20 (95% CI 0.17-0.24; P<.001), respectively. Among all broad CA groups, circulatory system malformations, mainly deaths caused by congenital heart diseases, accounted for 49.4% (866/1753) of deaths and ranked first across all years, although it declined yearly with an AACR of -9.8% (P<.001). Deaths due to chromosomal abnormalities tended to grow in recent years, although the AACR was not significant (P=.90). CONCLUSIONS: CAMR reduced annually, with cardiovascular malformations ranking first across all years in Zhejiang, China. Future research and practices should focus more on the prevention, early detection, long-term management of CAs and comprehensive support for families with children with CAs to improve their survival chances.


Subject(s)
Child Mortality , Congenital Abnormalities , Humans , China/epidemiology , Male , Congenital Abnormalities/mortality , Congenital Abnormalities/epidemiology , Female , Infant , Child, Preschool , Infant, Newborn , Child Mortality/trends , Population Surveillance/methods , Data Analysis
19.
Nano Lett ; 24(25): 7681-7687, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38874562

ABSTRACT

The rare-earth telluride compound EuTe4 exhibits a charge density wave (CDW) and an unconventional thermal hysteresis transition. Herein, we report a comprehensive study of the CDW states in EuTe4 by using low-temperature scanning tunneling microscopy. Two types of charge orders are observed at 4 K, including a newly discovered spindle-shaped pattern and a typical stripe-like pattern. As an exotic charge order, the spindle-shaped CDW is off-axis and barely visible at 77 K, indicating that it is a hidden order developed at low temperature. Based on our first-principles calculations, we reveal the origins of the observed electronic instabilities. The spindle-shaped charge order stems from a subsequent transition based on the stripe-like CDW phase. Our work demonstrates that the competition and cooperation between multiple charge orders can generate exotic quantum phases.

20.
Heliyon ; 10(11): e32251, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933955

ABSTRACT

Autism spectrum disorder (ASD) is a behaviorally defined complex neurodevelopmental syndrome characterized by persistent social communication and interaction deficit. Transcranial magnetic stimulation (TMS) is a promising and emerging tool for the intervention of ASD by reducing both core and associate symptoms. Several reviews have been published regarding TMS-based ASD treatment, however, a systematic review on study characteristics, specific stimulating parameters, localization techniques, stimulated targets, behavioral outcomes, and neuroimage biomarker changes is lagged behind since 2018. Here, we performed a systematic search on literatures published after 2018 in PubMed, Web of Science, and Science Direct. After screening, the final systematic review included 17 articles, composing seven randomized controlled trial studies and ten open-label studies. Two studies are double-blind, while the other studies have a moderate to high risk of bias attributing to inadequate subject- and evaluator-blinding to treatment allocation. Five studies utilize theta-burst stimulation mode, and the others apply repetitive TMS with low frequency (five studies), high frequency (six studies), and combined low and high frequency stimulation (one study). Most researchers prioritize the bilateral dorsolateral prefrontal lobe as stimulation target, while parietal lobule, inferior parietal lobule, and posterior superior temporal sulci have also emerged as new targets of attention. One third of the studies use neuronavigation based on anatomical magnetic resonance imaging to locate the stimulation target. After TMS intervention, discernible enhancements across a spectrum of scales are evident in stereotyped behavior, repetitive behavior, and verbal social domains. A comprehensive review of literature spanning the last five years demonstrates the potential of TMS treatment for ASD in ameliorating the clinical core symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL