Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 838(Pt 2): 156081, 2022 Sep 10.
Article in English | MEDLINE | ID: mdl-35598667

ABSTRACT

Biochars have been highlighted as a means of carbon sequestration, which is significant for achieving carbon neutrality. Mixtures of wood chips and either bentonite or kaolin were co-pyrolysed at temperatures of 350 °C and 550 °C, and the microstructural characteristics and the carbon sequestration potential of the resultant biochar were explored in the study. The addition of minerals promoted the formation of a stable carbon structure in biochar, especially the proportion of SiC bonds in the high-temperature mineral-composited biochar increased by 3.56-3.82 times compared with the original biochar. After bentonite or kaolin was added to wood chips pyrolysed at 550 °C, the carbon loss after H2O2 oxidation was reduced to no more than 19.2%, and the Recalcitrance Index (R50) of biochar increased to no less than 0.89. The combined action of high temperature and minerals promoted the formation of highly aromatic structures of biochar (H:C < 0.4) and reduced the amount of dissolved organic carbon to 4.89 mg g-1. Furthermore, minerals directly covered the surface of biochar, and the content of SiC bond increased, thus strengthening the chemical and thermal stability of biochar. However, the addition of minerals had no significant effect on the biological stability of biochar. The study indicates that the pre-pyrolysis mineral addition is an effective way to increase the carbon sequestration potential of biochar.


Subject(s)
Carbon Sequestration , Pyrolysis , Bentonite , Carbon/chemistry , Charcoal/chemistry , Hydrogen Peroxide , Kaolin/chemistry , Minerals/chemistry , Temperature , Wood
2.
ACS Omega ; 6(23): 15316-15331, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34151111

ABSTRACT

Halloysite nanotubes (HNT) and ball-milled biochar (BC) incorporated biocompatible mesoporous adsorbents (HNT-BC@Alg) were synthesized for adsorption of aqueous heavy-metal ions. HNT-BC@Alg outperformed the BC, HNT, and BC@Alg in removing cadmium (Cd), copper (Cu), nickel (Ni), and lead (Pb). Mesoporous structure (∼7.19 to 7.56 nm) of HNT-BC@Alg was developed containing an abundance of functional groups induced from encapsulated BC and tubular HNT, which allowed heavy metals to infiltrate and interact with the adsorbents. Siloxane groups from HNT, oxygen-containing functional groups from BC, and hydroxyl and carboxyl groups from alginate polymer play a significant role in the adsorption of heavy-metal ions. The removal percentage of heavy metals was recorded as Pb (∼99.97 to 99.05%) > Cu (∼95.01 to 90.53%) > Cd (∼92.5 to 55.25%) > Ni (∼80.85 to 50.6%), even in the presence of 0.01/0.001 M of CaCl2 and Na2SO4 as background electrolytes and charged organic molecule under an environmentally relevant concentration (200 µg/L). The maximum adsorption capacities of Ni, Cd, Cu, and Pb were calculated as 2.85 ± 0.08, 6.96 ± 0.31, 16.87 ± 1.50, and 26.49 ± 2.04 mg/g, respectively. HNT-BC@Alg has fast sorption kinetics and maximum adsorption capacity within a short contact time (∼2 h). Energy-dispersive X-ray spectroscopy (EDS) elemental mapping exhibited that adsorbed heavy metals co-distributed with Ca, Si, and Al. The reduction of surface area, pore volume, and pore area of HNT-BC@Alg (after sorption of heavy metals) confirms that mesoporous surface (2-18 nm) supports diffusion, infiltration, and interaction. However, a lower range of mesoporous diameter of the adsorbent is more suitable for the adsorption of heavy-metal ions. The adsorption isotherm and kinetics fitted well with the Langmuir isotherm and the pseudo-second-order kinetic models, demonstrating the monolayer formation of heavy-metal ions through both the physical sorption and chemical sorption, including pore filling, ion exchange, and electrostatic interaction.

3.
J Hazard Mater ; 408: 124896, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33387722

ABSTRACT

Herein, we report the fabrication of highly oxidized silver oxide/silver/tin(IV) oxide (HOSBTO or Ag3+-enriched AgO/Ag/SnO2) nanocomposite under a robust oxidative environment created with the use of concentrated nitric acid. Tin(IV) hydroxide nanofluid is added to the reaction mixture as a stabilizer for the Ag3+-enriched silver oxide in the nanocomposite. The formation of Ag nanoparticles in this nanocomposite originates from the decomposition of silver oxides during calcination at 600 °C. For comparison, poorly oxidized silver oxide/silver/tin(IV) oxide (POSBTO with formula AgO/Ag/SnO2) nanocomposite has also been prepared by following the same synthetic procedures, except for the use of concentrated nitric acid. Finally, we studied in detail the anti-pathogenic capabilities of both nanocomposites against four hazardous pathogens, including pathogenic fish bacterium (Stenotrophomonas maltophilia stain EP10), oomycete (Phytophthora cactorum strain P-25), and two different strains of pathogenic strawberry fungus, BRSP08 and BRSP09 (Collectotrichum siamense). The bioassays reveal that the as-prepared HOSBTO and POSBTO nanocomposites exhibit significant inhibitory activities against the tested pathogenic bacterium, oomycete, and fungus in a dose-dependent manner. However, the degree of dose-dependent effectiveness of the two nanocomposites against each pathogen largely varies.


Subject(s)
Metal Nanoparticles , Nanocomposites , Animals , Anti-Bacterial Agents , Oxides , Silver , Silver Compounds , Tin
4.
RSC Adv ; 10(40): 23829-23833, 2020 Jun 19.
Article in English | MEDLINE | ID: mdl-35517331

ABSTRACT

Defects at discontinuities of the perovskite lattice limit the performance of the perovskite solar cell (PSC). Lead iodide (PbI2) and pyridine have been shown to passivate these defects. We treat methylammonium lead iodide (MAPbI3) films with pyridine solutions to investigate the effects of the two passivators. By comparing confocal fluorescence microscopy (CFM) images at 405 nm excitation and then at 559 nm excitation we demonstrate the pyridine treatment passivates and forms PbI2 crystallites which cause additional passivation.

5.
RSC Adv ; 9(63): 36771-36787, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-35539033

ABSTRACT

Carbons have been synthesized through the reduction of molten carbonate systems under varied conditions. The mechanism and kinetics of carbon electrodeposition has been investigated. Carbon morphologies include amorphous, graphite-like, and spherical aggregate phases. Increased graphitic character is observed in carbons electrodeposited at more cathodic potentials, particularly at higher temperatures. Bonding has been investigated and oxygen functionalised sp2 and sp3 structures have been identified. The level of functionalization decreases in carbons with reduced amorphous and increased graphitic character. Thermal decomposition of electrodepositied carbons has been investigated and zero order kinetics have been identified. A relationship has been identified between elevated oxygen functionalization and increased pseudo-capacitance, with carbons deposited at 0.15 A cm-2 showing capacitances of 400 F g-1 in 0.5 M H2SO4 at sweep rates of 10 mV s-1.

6.
Bioresour Technol ; 246: 48-56, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28756990

ABSTRACT

In this study, the thermal stability of a wood shaving biochar (WS, 650°C), a chicken litter biochar (CL, 550°C) and an activated carbon (AC, 1100°C) were evaluated by combustion at 375°C for 24h to remove the labile non-carbonized organic matter. Results showed that WS and CL biochars were not thermally stable and can lose most of the organic C during combustion. The combusted WS and CL biochars retained considerable amounts of negative charge and displayed higher sorption for Cd (from 5.46 to 68.9mg/g for WS and from 48.5 to 60.9mg/g for CL). The AC retained 76.5% of its original C and became more negatively chargely after combustion, but its sorption for Cd slightly decreased (from 18.5 to 14.9mg/g). This study indicated that after potential burning in wildfires (200-500°C), biochars could have higher sorption capacity for metals by remaining minerals.


Subject(s)
Cadmium , Charcoal , Adsorption , Wood
7.
ACS Omega ; 1(4): 518-531, 2016 Oct 31.
Article in English | MEDLINE | ID: mdl-30023484

ABSTRACT

Elevated histamine (HTM) levels are closely linked to food poisoning as well as to pathophysiological allergic diseases. In this study, HTM-imprinted, solution-processable microspheres were prepared via high-dilution conventional thermal polymerization (CTP) and controlled radical polymerization (CRP) using ethylene glycol dimethacrylate (80 or 90 wt %) and methacrylic acid at 60 °C in acetonitrile and evaluated as recognition materials for sensing applications. The polymers were selective to HTM in binding studies, cross-rebinding, and competitive binding assays against the HTM analogues histidine, imidazole, and tryptamine. The selective binding capacity was significantly higher with CTP-80 (on the basis of mass: 21.0 µmol/g and surface area: 8.08 × 10-2 µmol/m2) than that with both CTP-90 (8.47 µmol/g, 4.49 × 10-2 µmol/m2) and CRP-80 (9.00 µmol/g, 1.19 × 10-2 µmol/m2).

8.
Exp Brain Res ; 210(3-4): 607-21, 2011 May.
Article in English | MEDLINE | ID: mdl-21350807

ABSTRACT

The mode of synaptic transmission in the vestibular periphery, between type I hair cells and their associated calyx terminal, has been the subject of much debate. The close and extensive apposition of pre- and post-synaptic elements has led some to suggest potassium (K(+)) accumulates in the intercellular space and even plays a role in synaptic transmission. During patch clamp recordings from isolated and embedded hair cells in a semi-intact preparation of the mouse cristae, we noted marked differences in whole-cell currents. Embedded type I hair cells show a prominent droop during steady-state activation as well as a dramatic collapse in tail currents. Responses to a depolarizing voltage step (-124 to +16 mV) in embedded, but not isolated, hair cells resulted in a >40 mV shift of the K(+) equilibrium potential and a rise in effective K(+) concentration (>50 mM) in the intercellular space. Together these data suggest K(+) accumulation in the intercellular space accounts for the different responses in isolated and embedded type I hair cells. To test this notion, we exposed the preparation to hyperosmotic solutions to enlarge the intercellular space. As predicted, the K(+) accumulation effects were reduced; however, a fit of our data with a classic diffusion model suggested K(+) permeability, rather than the intercellular space, had been altered by the hyperosmotic change. These results support the notion that under depolarizing conditions substantial K(+) accumulation occurs in the space between type I hair cells and calyx. The extent of K(+) accumulation during normal synaptic transmission, however, remains to be determined.


Subject(s)
Hair Cells, Vestibular/physiology , Potassium/metabolism , Presynaptic Terminals/physiology , Synaptic Transmission/physiology , Vestibule, Labyrinth/cytology , Animals , Animals, Newborn , Biophysics/methods , Electric Stimulation/methods , Female , In Vitro Techniques , Male , Mice , Mice, Inbred C57BL , Osmolar Concentration , Patch-Clamp Techniques/methods , Tenascin/metabolism
9.
Mol Pharmacol ; 76(1): 113-24, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19336525

ABSTRACT

There is an urgent need to develop safe, effective, dual-purpose contraceptive agents that combine the prevention of pregnancy with protection against sexually transmitted diseases. Here we report the identification of a group of compounds that on contact with human spermatozoa induce a state of "spermostasis," characterized by the extremely rapid inhibition of sperm movement without compromising cell viability. These spermostatic agents were more active and significantly less toxic than the reagent in current clinical use, nonoxynol 9, giving therapeutic indices (ratio of spermostatic to cytotoxic activity) that were orders of magnitude greater than this traditional spermicide. Although certain compounds could trigger reactive oxygen species generation by spermatozoa, this activity was not correlated with spermostasis. Rather, the latter was associated with alkylation of two major sperm tail proteins that were identified as A Kinase-Anchoring Proteins (AKAP3 and AKAP4) by mass spectrometry. As a consequence of disrupted AKAP function, the abilities of cAMP to drive protein kinase A-dependent activities in the sperm tail, such as the activation of SRC and the consequent stimulation of tyrosine phosphorylation, were suppressed. Furthermore, analysis of microbicidal activity using Chlamydia muridarum revealed powerful inhibitory effects at the same low micromolar doses that suppressed sperm movement. In this case, the microbicidal action was associated with alkylation of Major Outer Membrane Protein (MOMP), a major chlamydial membrane protein. Taken together, these results have identified for the first time a novel set of cellular targets and chemical principles capable of providing simultaneous defense against both fertility and the spread of sexually transmitted disease.


Subject(s)
Anti-Bacterial Agents/pharmacology , Contraceptive Agents/pharmacology , Maleimides/pharmacology , Quinones/pharmacology , Spermatozoa/drug effects , A Kinase Anchor Proteins/physiology , Alkylation , Cell Survival/drug effects , Chlamydia muridarum/drug effects , Cyclic AMP-Dependent Protein Kinases/physiology , Humans , Male , Sexually Transmitted Diseases/prevention & control , Signal Transduction , Sperm Motility/drug effects , Structure-Activity Relationship
10.
J Colloid Interface Sci ; 320(1): 210-8, 2008 Apr 01.
Article in English | MEDLINE | ID: mdl-18206902

ABSTRACT

In this work a titration technique has been used to characterize the amphoteric surface properties of a series of chemically reduced electrolytic manganese dioxide (EMD) samples (MnO 1.97 to MnO 1.50). The surface of the EMD was found to consist of independent acidic and basic hydroxyl groups, which were able to be characterised by their respective equilibrium constants and site concentrations. For this chemically reduced series Kb varied from (1.81-8.43)x10(-10) as reduction proceeded, with the corresponding basic site concentration varying from (0.20-2.50)x10(-4) mol/m2 over the pH range considered. Ka was ranged from (1.23-9.23)x10(-6) over the reduction range considered. The increase in Kb suggested a weakening of the MnO bond via the introduction of the larger Mn3+ ions which will increase the length of this bond. Weakening the MnO bond results in a corresponding strengthening of the OH bond giving the surface hydroxyl group a basic nature which is supported by the increasing basic site concentration. For the samples with an x in MnOx value above 1.71 the total number of acidic sites decreased which supports the increase in the concentration of basic sites; however, below 1.71, the surface concentration of acidic sites increases slightly, which can be rationalised by the fact that the pyrolusite domains within the EMD (with relatively stronger MnO bonds) are accessible at this stage of the reduction. The number of surface oxide sites (Ns) and surface hydroxyl sites (Ns(OH)) were calculated crystallographically, and from the sum of the acid and basic hydroxyl groups determined by titration. Both methods produced data with the same order of magnitude, as well as indicated the expected increase in the number of surface hydroxyl groups with increasing degree of reduction. Electrochemical analysis of the samples in 9 M KOH showed the expected decrease in capacity with an increase in the degree of reduction. It also showed a decrease in the amount of charge contributed to the overall homogeneous reduction by Mn4+ ions in surface defects and within the ramsdellite domains over the entire x in MnOx range. However, the amount of charge contributed from the pyrolusite domains remained unchanged until after a x in MnOx value of 1.71.

11.
J Colloid Interface Sci ; 285(2): 653-64, 2005 May 15.
Article in English | MEDLINE | ID: mdl-15837483

ABSTRACT

In this work a titration technique was used to determine the amphoteric surface properties of a series of heat-treated electrolytic manganese dioxide (EMD) samples (up to 500 degrees C). The surface of each sample was found to consist of independent acidic and basic hydroxyl sites, which could be characterized by their respective equilibrium constants and site concentrations. It was found that the acidic sites could not be characterized by a single equilibrium constant, but rather by a distribution indicating the subtle differences between individual sites, while a single equilibrium constant adequately represented the basic sites. For EMD, K(a) varied between 0.1 and 6.3x10(-5), with a corresponding [MnOH((a)T)] value varying between 9.1 and 6.4x10(-6) mol m(-2) over the pH range considered. K(b) and [MnOH((b)T)] were found to be 1.81x10(-9) and 1.93x10(-5) mol m(-2), respectively. With heat treatment, K(a) increased, suggesting a strengthening of the MnO bond via the removal of defects such as Mn(3+) ions and cation vacancies. The fact that K(b) also increased was initially counterintuitive because it suggested that the MnO bond had been weakened by heat treatment. However, assuming that the acidic and basic hydroxyl groups are independent, the trends in K(b) could be rationalized in terms of oxygen ion coordination in the progressively heat-treated samples. The number of surface sites (N(s)) was determined crystallographically and from the sum [MnOH((a)T)] + [MnOH((b)T)]. The data from both methods were of the same order of magnitude but exhibited different trends due to certain inadequacies in both methods. However, the data trends did indicate that the crystal planes at the particle surface could be changing with heat treatment due to a decrease in the value of N(s) determined from the surface titrations. Electrochemical analysis of the samples in 9 M KOH indicated that their performance degraded considerably with heat treatment. In comparison with the surface titration data, it was concluded that proton insertion into the structure occurred only through basic surface sites, the decreasing number of which could limit performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...