Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Neurology ; 102(10): e209387, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38701386

ABSTRACT

BACKGROUND AND OBJECTIVES: Motor outcomes after stroke relate to corticospinal tract (CST) damage. The brain leverages surviving neural pathways to compensate for CST damage and mediate motor recovery. Thus, concurrent age-related damage from white matter hyperintensities (WMHs) might affect neurologic capacity for recovery after CST injury. The role of WMHs in post-stroke motor outcomes is unclear. In this study, we evaluated whether WMHs modulate the relationship between CST damage and post-stroke motor outcomes. METHODS: We used data from the multisite ENIGMA Stroke Recovery Working Group with T1 and T2/fluid-attenuated inversion recovery imaging. CST damage was indexed with weighted CST lesion load (CST-LL). WMH volumes were extracted with Freesurfer's SAMSEG. Mixed-effects beta-regression models were fit to test the impact of CST-LL, WMH volume, and their interaction on motor impairment, controlling for age, days after stroke, and stroke volume. RESULTS: A total of 223 individuals were included. WMH volume related to motor impairment above and beyond CST-LL (ß = 0.178, 95% CI 0.025-0.331, p = 0.022). Relationships varied by WMH severity (mild vs moderate-severe). In individuals with mild WMHs, motor impairment related to CST-LL (ß = 0.888, 95% CI 0.604-1.172, p < 0.001) with a CST-LL × WMH interaction (ß = -0.211, 95% CI -0.340 to -0.026, p = 0.026). In individuals with moderate-severe WMHs, motor impairment related to WMH volume (ß = 0.299, 95% CI 0.008-0.590, p = 0.044), but did not significantly relate to CST-LL or a CST-LL × WMH interaction. DISCUSSION: WMHs relate to motor outcomes after stroke and modify relationships between motor impairment and CST damage. WMH-related damage may be under-recognized in stroke research as a factor contributing to variability in motor outcomes. Our findings emphasize the importance of brain structural reserve in motor outcomes after brain injury.


Subject(s)
Pyramidal Tracts , Stroke , White Matter , Humans , Pyramidal Tracts/diagnostic imaging , Pyramidal Tracts/pathology , Male , Female , Aged , White Matter/diagnostic imaging , White Matter/pathology , Stroke/diagnostic imaging , Stroke/pathology , Stroke/complications , Stroke/physiopathology , Middle Aged , Magnetic Resonance Imaging , Recovery of Function/physiology , Aged, 80 and over
2.
Stroke ; 54(9): 2438-2441, 2023 09.
Article in English | MEDLINE | ID: mdl-37465999

ABSTRACT

BACKGROUND: Integrity of the corticospinal tract (CST) is an important biomarker for upper limb motor function following stroke. However, when structurally compromised, other tracts may become relevant for compensation or recovery of function. METHODS: We used the ENIGMA Stroke Recovery data set, a multicenter, retrospective, and cross-sectional collection of patients with upper limb impairment during the chronic phase of stroke to test the relevance of tracts in individuals with less and more severe (laterality index of CST fractional anisotropy ≥0.25) CST damage in an observational study design. White matter integrity was quantified using fractional anisotropy for the CST, the superior longitudinal fascicle, and the callosal fibers interconnecting the primary motor cortices between hemispheres. Optic radiations served as a control tract as they have no a priori relevance for the motor system. Pearson correlation was used for testing correlation with upper limb motor function (Fugl-Meyer upper extremity). RESULTS: From 1235 available data sets, 166 were selected (by imaging, Fugl-Meyer upper extremity, covariates, stroke location, and stage) for analyses. Only individuals with severe CST damage showed a positive association of fractional anisotropy in both callosal fibers interconnecting the primary motor cortices (r[21]=0.49; P=0.025) and superior longitudinal fascicle (r[21]=0.51; P=0.018) with Fugl-Meyer upper extremity. CONCLUSIONS: Our data support the notion that individuals with more severe damage of the CST depend on residual pathways for achieving better upper limb outcome than those with less affected CST.


Subject(s)
Stroke , White Matter , Humans , Cross-Sectional Studies , Retrospective Studies , White Matter/diagnostic imaging , Upper Extremity , Pyramidal Tracts/diagnostic imaging , Recovery of Function
3.
Neurology ; 100(20): e2103-e2113, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37015818

ABSTRACT

BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes. METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage. RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (ß = 0.21; 95% CI 0.04-0.38, p = 0.015), which in turn was associated with poorer outcomes, both in the sensorimotor domain (ß = -0.28; 95% CI -0.41 to -0.15, p < 0.001) and across multiple domains of function (ß = -0.14; 95% CI -0.22 to -0.06, p < 0.001). Brain age mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI 3%-58%, p = 0.01). Greater brain resilience explained why people have better outcomes, given matched lesion damage (odds ratio 1.04, 95% CI 1.01-1.08, p = 0.004). DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets.


Subject(s)
Stroke , Humans , Aged , Cross-Sectional Studies , Stroke/complications , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging
4.
OTJR (Thorofare N J) ; 43(3): 549-557, 2023 07.
Article in English | MEDLINE | ID: mdl-36803173

ABSTRACT

Electromyography (EMG) biofeedback delivered via telerehabilitation can increase access to occupational therapy services for stroke survivors with severe impairment, but there is limited research on its acceptability. This study identified factors influencing the acceptability of a complex, muscle biofeedback system (Tele-REINVENT) for upper extremity sensorimotor stroke telerehabilitation among stroke survivors. We conducted interviews with stroke survivors (n = 4) who used Tele-REINVENT at home for 6 weeks and analyzed the data with reflexive thematic analysis. Biofeedback, customization, gamification, and predictability affected the acceptability of Tele-REINVENT among stroke survivors. Across themes, features and experiences that gave participants agency and control were more acceptable. Our findings contribute to the design and development of at-home EMG biofeedback interventions, which can improve access to advanced occupational therapy treatment options for those who need it most.


Subject(s)
Stroke Rehabilitation , Stroke , Telerehabilitation , Humans , Biofeedback, Psychology , Survivors
5.
Sci Data ; 9(1): 320, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710678

ABSTRACT

Accurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in stroke research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires neuroanatomical expertise. We previously released an open-source dataset of stroke T1w MRIs and manually-segmented lesion masks (ATLAS v1.2, N = 304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N = 1271), a larger dataset of T1w MRIs and manually segmented lesion masks that includes training (n = 655), test (hidden masks, n = 300), and generalizability (hidden MRIs and masks, n = 316) datasets. Algorithm development using this larger sample should lead to more robust solutions; the hidden datasets allow for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke research.


Subject(s)
Brain , Stroke , Algorithms , Brain/diagnostic imaging , Brain/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neuroimaging , Stroke/diagnostic imaging , Stroke/pathology
6.
J Am Heart Assoc ; 11(10): e025109, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35574963

ABSTRACT

Background Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper-limb sensorimotor impairment. We investigated associations between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results Cross-sectional T1-weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA-UE (Fugl-Meyer Assessment of Upper Extremity). Robust mixed-effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; ß=0.16) but not contralesional (P=0.96; ß=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; ß=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; ß=-0.26) and contralesional (P=0.006; ß=-0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; ß=-0.21) and extent of sensorimotor damage (P=0.003; ß=-0.15). Conclusions The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.


Subject(s)
Stroke Rehabilitation , Stroke , Cross-Sectional Studies , Female , Hippocampus/diagnostic imaging , Humans , Male , Quality of Life , Recovery of Function , Stroke/complications , Stroke/diagnostic imaging , Stroke Rehabilitation/methods , Upper Extremity
7.
Front Neuroimaging ; 1: 1098604, 2022.
Article in English | MEDLINE | ID: mdl-37555152

ABSTRACT

Although automated methods for stroke lesion segmentation exist, many researchers still rely on manual segmentation as the gold standard. Our detailed, standardized protocol for stroke lesion tracing on high-resolution 3D T1-weighted (T1w) magnetic resonance imaging (MRI) has been used to trace over 1,300 stroke MRI. In the current study, we describe the protocol, including a step-by-step method utilized for training multiple individuals to trace lesions ("tracers") in a consistent manner and suggestions for distinguishing between lesioned and non-lesioned areas in stroke brains. Inter-rater and intra-rater reliability were calculated across six tracers trained using our protocol, resulting in an average intraclass correlation of 0.98 and 0.99, respectively, as well as a Dice similarity coefficient of 0.727 and 0.839, respectively. This protocol provides a standardized guideline for researchers performing manual lesion segmentation in stroke T1-weighted MRI, with detailed methods to promote reproducibility in stroke research.

8.
Am J Occup Ther ; 75(6)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34817595

ABSTRACT

IMPORTANCE: Virtual reality in head-mounted displays (HMD-VR) may be a valuable tool in occupational therapy to address anxiety. Findings from the virtual reality exposure therapy (VRET) literature may facilitate translation of HMD-VR to occupational therapy psychosocial practice. OBJECTIVE: To explore how HMD-VR has been used to treat anxiety through VRET and could be translated to occupational therapy. DATA SOURCES: We searched seven electronic databases for articles published between 2000 and 2020: CINAHL, Cochrane Library, Embase, ERIC, Ovid MEDLINE, PsycINFO, and Web of Science. Search terms included HMD-VR constructs, products, and therapy concepts. Study Selection and Data Collection: We used Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to report studies implementing VRET to treat anxiety. At least two reviewers assessed each citation, and a third resolved disagreements. Articles were included if they were in English, reported experimental data, and used HMD-VR. Letters, commentaries, book chapters, technical descriptions, theoretical papers, conference proceedings (≤4 pages), and reviews were excluded. FINDINGS: Twenty-eight studies used HMD-VR to treat posttraumatic stress disorder (n = 3), specific phobias (n = 19), and performance-based social anxiety (n = 6); protocols and levels of evidence varied (randomized controlled trials, n = 11; controlled trials without randomization, n = 6; case-control or cohort studies, n = 11). Qualitative examination indicates HMD-VR is an effective treatment tool. CONCLUSIONS AND RELEVANCE: HMD-VR can be a valuable tool for occupational therapy to simulate environments where clients with anxiety disorders participate. Eliciting presence through multisensory features and body representation may enhance outcomes. What This Article Adds: Drawing from the VRET literature, this scoping review suggests that HMD-VR can be used by occupational therapy practitioners to simulate ecologically valid environments, evaluate client responses to fearful stimuli, and remediate anxiety though immersion in virtual tasks when participation in natural contexts is unfeasible. Having ecologically valid environments is particularly important for people with anxiety disorders because they need support to cope when they encounter triggers in everyday life environments.


Subject(s)
Phobic Disorders , Stress Disorders, Post-Traumatic , Virtual Reality , Anxiety , Anxiety Disorders/therapy , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...