Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770195

ABSTRACT

The increase in concrete structures' durability is a milestone to improve the sustainability of buildings and infrastructures. In order to ensure a prolonged service life, it is necessary to detect the deterioration of materials by means of monitoring systems aimed at evaluating not only the penetration of aggressive substances into concrete but also the corrosion of carbon-steel reinforcement. Therefore, proper data collection makes it possible to plan suitable restoration works which can be carried out with traditional or innovative techniques and materials. This work focuses on building heritage and it highlights the most recent findings for the conservation and restoration of reinforced concrete structures and masonry buildings.

2.
Materials (Basel) ; 15(11)2022 May 31.
Article in English | MEDLINE | ID: mdl-35683223

ABSTRACT

Nowadays, FRCM systems are increasingly used for the strengthening and retrofitting of existing masonry and reinforced concrete structures. Their effectiveness strongly depends on the bond that develops at the interface between multifilament yarns, which constitute the reinforcing fabric, and the inorganic matrix. It is well known that fabric yarns, especially when constituted by dry carbon fibers, have poor chemical-physical compatibility with inorganic matrices. For this reason, many efforts are being concentrated on trying to improve the interface compatibility by using different surface treatments on multifilament yarns. In this paper, three different surface treatments have been considered. The first two involve yarn pre-impregnation with flexible epoxy resin or nano-silica coating, while the third one involves a fiber oxidation process. Uniaxial tensile tests were carried out on single carbon yarns to evaluate tensile strength, elastic modulus and ultimate strain before and after surface treatments, and also after yarn exposure to accelerated artificial aging conditions (1000 h in saline or alkaline solutions at 40 °C), to evaluate their long-term behavior in aggressive environments. Pull-out tests on single carbon yarns embedded in a cementitious mortar were also carried out, under normal environmental conditions and after artificial exposure. Epoxy proved to be the most effective treatment, by increasing the yarn tensile strength of 34% and the pull-out load of 138%, followed by nano-silica (+9%; +40%). All surface treatments were shown to remain effective even after artificial environmental exposures, with a maximum reduction of yarn tensile strength of about 13%.

3.
J Appl Biomater Funct Mater ; 16(3): 186-202, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29996741

ABSTRACT

This review presents "a state of the art" report on sustainability in construction materials. The authors propose different solutions to make the concrete industry more environmentally friendly in order to reduce greenhouse gases emissions and consumption of non-renewable resources. Part 1-the present paper-focuses on the use of binders alternative to Portland cement, including sulfoaluminate cements, alkali-activated materials, and geopolymers. Part 2 will be dedicated to traditional Portland-free binders and waste management and recycling in mortar and concrete production.


Subject(s)
Construction Materials , Green Chemistry Technology , Waste Management/methods , Alkalies/chemistry , Aluminum Compounds/chemistry , Aluminum Silicates/chemistry , Calcium Compounds/chemistry , Clay , Corrosion , Sulfur Compounds/chemistry
4.
J Appl Biomater Funct Mater ; 16(4): 207-221, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29991308

ABSTRACT

The paper represents the "state of the art" on sustainability in construction materials. In Part 1 of the paper, issues related to production, microstructures, chemical nature, engineering properties, and durability of mixtures based on binders alternative to Portland cement were presented. This second part of the paper concerns the use of traditional and innovative Portland-free lime-based mortars in the conservation of cultural heritage, and the recycling and management of wastes to reduce consumption of natural resources in the production of construction materials. The latter is one of the main concerns in terms of sustainability since nowadays more than 75% of wastes are disposed of in landfills.


Subject(s)
Construction Materials , Waste Management/methods , Calcium Compounds/chemistry , Clay/chemistry , Green Chemistry Technology/methods , Oxides/chemistry , Recycling , Rubber/chemistry , Silicon Dioxide/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...