Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Biol ; 32(23): 5159-5164.e4, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36306788

ABSTRACT

Predation risk imposes strong selection pressures on visual systems to quickly and accurately identify the position and movement of potential predators.1,2 Many invertebrates and other small animals, however, have limited capacity for distance perception due to their low spatial resolution and closely situated eyes.3,4 Consequently, they often rely on simplified decision criteria, essentially heuristics or "rules of thumb", to make decisions. The visual cues animals use to make escape decisions are surprisingly consistent, especially among arthropods, with the timing of escape commonly triggered by size-dependent visual cues such as angular size or angular size increment.5,6,7,8,9,10 Angular size, however, confuses predator size and distance and provides no information about the speed of the attack. Here, we show that fiddler crabs (Gelasimus dampieri) are unique among the arthropods studied to date as they timed their escape response based on the speed of an object's angular expansion. The crabs responded reliably by running away from visual stimuli that expanded at approximately 1.7 degrees/s, irrespective of stimulus size, speed, or its initial distance from the crabs. Though the threshold expansion speed was consistent across different stimulus conditions, we found that the escape timing was modulated by the elevation at which the stimulus approached, suggesting that other risk factors can bias the expansion speed threshold. The results suggest that the visual escape cues used by arthropods are less conserved than previously thought and that lifestyle and environment are significant drivers determining the escape cues used by different species.


Subject(s)
Behavior, Animal , Brachyura , Visual Perception
2.
Sci Rep ; 12(1): 10022, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35705656

ABSTRACT

Selective attention, the ability to focus on a specific stimulus and suppress distractions, plays a fundamental role for animals in many contexts, such as mating, feeding, and predation. Within natural environments, animals are often confronted with multiple stimuli of potential importance. Such a situation significantly complicates the decision-making process and imposes conflicting information on neural systems. In the context of predation, selectively attending to one of multiple threats is one possible solution. However, how animals make such escape decisions is rarely studied. A previous field study on the fiddler crab, Gelasimus dampieri, provided evidence of selective attention in the context of escape decisions. To identify the underlying mechanisms that guide their escape decisions, we measured the crabs' behavioural and neural responses to either a single, or two simultaneously approaching looming stimuli. The two stimuli were either identical or differed in contrast to represent different levels of threat certainty. Although our behavioural data provides some evidence that crabs perceive signals from both stimuli, we show that both the crabs and their looming-sensitive neurons almost exclusively respond to only one of two simultaneous threats. The crabs' body orientation played an important role in their decision about which stimulus to run away from. When faced with two stimuli of differing contrasts, both neurons and crabs were much more likely to respond to the stimulus with the higher contrast. Our data provides evidence that the crabs' looming-sensitive neurons play an important part in the mechanism that drives their selective attention in the context of predation. Our results support previous suggestions that the crabs' escape direction is calculated downstream of their looming-sensitive neurons by means of a population vector of the looming sensitive neuronal ensemble.


Subject(s)
Brachyura , Animals , Attention , Brachyura/physiology , Escape Reaction/physiology , Neurons/physiology , Predatory Behavior
3.
J Exp Biol ; 223(Pt 21)2020 11 09.
Article in English | MEDLINE | ID: mdl-33168543

ABSTRACT

Selective attention is of fundamental relevance to animals for performing a diversity of tasks such as mating, feeding, predation and avoiding predators. Within natural environments, prey animals are often exposed to multiple, simultaneous threats, which significantly complicates the decision-making process. However, selective attention is rarely studied in complex, natural environments or in the context of escape responses. We therefore asked how relatively simple animals integrate the information from multiple, concurrent threatening events. Do they identify and respond only to what they perceive as the most dangerous threat, or do they respond to multiple stimuli at the same time? Do simultaneous threats evoke an earlier or stronger response than single threats? We investigated these questions by conducting field experiments and compared escape responses of the fiddler crab Gelasimus dampieri when faced with either a single or two simultaneously approaching dummy predators. We used the dummies' approach trajectories to manipulate the threat level; a directly approaching dummy indicated higher risk while a tangentially approaching dummy that passed the crabs at a distance represented a lower risk. The crabs responded later, but on average more often, when approached more directly. However, when confronted with the two dummies simultaneously, the crabs responded as if approached only by the directly approaching dummy. This suggests that the crabs are able to predict how close the dummy's trajectory is to a collision course and selectively suppress their normally earlier response to the less dangerous dummy. We thus provide evidence of predictive selective attention within a natural environment.


Subject(s)
Brachyura , Animals , Attention , Environment , Predatory Behavior
4.
Proc Biol Sci ; 287(1927): 20200477, 2020 05 27.
Article in English | MEDLINE | ID: mdl-32396802

ABSTRACT

A three-dimensional body shape is problematic for camouflage because overhead lighting produces a luminance gradient across the body's surface. Countershading, a form of patterning where animals are darkest on their uppermost surface, is thought to counteract this luminance gradient and enhance concealment, but the mechanisms of protection remain unclear. Surprisingly, no study has examined how countershading alters prey contrast, or investigated how the presence of a dorsoventral luminance gradient affects detection under controlled viewing conditions. It has also been suggested that the direction of the dorsoventral luminance gradient (darkest or lightest on top) may interfere with predators' abilities to resolve prey's three-dimensional shape, yet this intriguing idea has never been tested. We used live fish predators (western rainbowfish, Melanotaenia australis) and computer-generated prey images to compare the detectability of uniformly pigmented (i.e. non-countershaded) prey with that of optimally countershaded prey of varying contrasts against the background. Optimally countershaded prey were difficult for predators to detect, and the probability and speed of detection depended on prey luminance contrast with the background. In comparison, non-countershaded prey were always highly detectable, even though their average luminance closely matched the luminance of the background. Our findings suggest that uniformly pigmented three-dimensional prey are highly conspicuous to predators because overhead lighting increases luminance contrast between different body parts or between the body and the background. We found no evidence for the notion that countershading interferes with predator perception of three-dimensional form.


Subject(s)
Pigmentation , Predatory Behavior , Animals , Biological Evolution , Food Chain
SELECTION OF CITATIONS
SEARCH DETAIL