Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Psychoneuroendocrinology ; 164: 107007, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38503195

ABSTRACT

The endogenous cannabinoid (ECB) system is a small molecule lipid signalling system that is involved in stress response activation and is associated with PTSD, but it is unclear whether salivary ECBs are part of the sympathetic nervous system response to stress. We conducted an adapted trauma film paradigm, where participants completed a cold pressor test (or control) while watching a 10-minute trauma film. We also collected saliva and hair samples and tested them for ECBs, cortisol, and salivary alpha amylase (sAA). As hypothesised, there were significant positive correlations between sAA activity and salivary ECB levels, particularly 2-arachidonoyl glycerol (2-AG), though ECBs were not correlated with sAA stress reactivity. Participants who had a significant cortisol response to the trauma film/stressor reported less intrusive memories, which were also less distressing and less vivid. This effect was moderated by arachidonoyl ethanolamide (AEA), where decreases in AEA post-stress were associated with more intrusive memories in cortisol non-responders only. This study provides new evidence for the role of ECBs in the sympathetic nervous system.


Subject(s)
Arachidonic Acids , Hydrocortisone , Salivary alpha-Amylases , Humans , Endocannabinoids , Polyunsaturated Alkamides , Saliva
2.
Vaccines (Basel) ; 11(12)2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38140203

ABSTRACT

Assaying the potency of inactivated viral influenza vaccines is performed using single radial immunodiffusion, which is the globally accepted release method for potency. Under conditions of a rapidly emerging pandemic, such as the 2009 H1N1 influenza pandemic, a recognized obstacle in the delivery of vaccines to the public is the time needed for the distribution of calibrated SRID reagents (antisera and antigen standards) to vaccine manufacturers. Previously, we first described a novel streamlined MS-based assay, CombE-IDMS, which does not rely on antisera/antibodies or reference antigens, as a potential rapidly deployable alternate potency method through a comparison with SRID on adjuvanted seasonal quadrivalent vaccine cell-based (aQIVc) materials. In this report, we further demonstrate that the CombE-IDMS method can also be applied to measure the potency of pre-pandemic H5N1 and H5N8 monovalent vaccine materials, each subtype both unadjuvanted and adjuvanted, through a forced degradation study. Overall, CombE-IDMS results align with those of the gold standard SRID method on both H5N1 and H5N8 materials under conditions of thermal, pH, oxidative and freeze/thaw stress, lending further evidence for the CombE-IDMS method's suitability as an alternate assay for potency of both seasonal and pandemic influenza vaccines.

3.
Anal Chem ; 95(34): 12842-12850, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37587402

ABSTRACT

The potency of all currently licensed inactivated influenza viral vaccines is assayed by the single radial immunodiffusion (SRID) method. SRID relies upon antisera and reference antigen reagents which are produced, standardized, and distributed in the mass quantities needed for vaccine manufacturers only after a significant amount of time has elapsed from the seasonal strain recommendations issued by the WHO; this time delay is exacerbated under conditions of an emerging pandemic. Previously, the limited trypsin digestion isotope dilution mass spectrometry (LTD-IDMS) method, which does not require antisera or reference antigens, demonstrated comparable quantitation of immunologically active hemagglutinin, the primary viral antigen, to SRID in stressed vaccine materials. Here, we demonstrate a streamlined improvement to the LTD-IDMS method by eliminating the need for its precipitation and washing steps, saving time and labor in the sample preparation process while paving the way for plate-based high-throughput analysis. This is accomplished using dissimilar proteases in the pretreatment (a combination of chymotrypsin and elastase) and analytical (trypsin) digestion steps so that any pretreatment digests will not cause interference while monitoring analytical tryptic digests by IDMS. The combination of enzymes (CombE)-IDMS method is tested alongside LTD-IDMS and SRID for the first time on MF59 adjuvanted seasonal cell-based quadrivalent influenza vaccines (aQIVc) under stressed conditions of heating, oxidation, lowered and elevated pH, and freeze-thaw. Overall, a correlation in the degradation trend is observed between CombE-IDMS and SRID in the four strains of the quadrivalent formulation, highlighting the method's stability indicating capability as a rapid alternate potency assay in a highly complex formulation of aQIVc.


Subject(s)
Influenza Vaccines , Trypsin , Adjuvants, Immunologic , Research Design , Immune Sera
4.
Neurosci Biobehav Rev ; 139: 104756, 2022 08.
Article in English | MEDLINE | ID: mdl-35779627

ABSTRACT

Some previous research has shown stronger acquisition and impaired extinction of fear conditioned to angry or fearful compared to happy or neutral face conditional stimuli (CS) - a difference attributed to biological 'preparedness'. A systematic review and meta-analysis of fear conditioning studies comparing face CSs of differing expressions identified thirty studies, eighteen of which were eligible for meta-analysis. Skin conductance responses were larger to angry or fearful faces compared to happy or neutral faces during habituation, acquisition and extinction. Significant differences in differential conditioning between angry, fearful, neutral, and happy face CSs were also found, but differences were more prominent between angry and neutral faces compared to angry/fearful and happy faces. This is likely due to lower arousal elicited by neutral compared to happy faces, which may be more salient as CSs. The findings suggest there are small to moderate differences in differential conditioning when angry or fearful compared to happy or neutral faces are used as CSs. These findings have implications for fear conditioning study design and the preparedness theory.


Subject(s)
Anger , Facial Expression , Arousal , Fear/physiology , Happiness , Humans
5.
Biophys J ; 119(2): 389-401, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32621866

ABSTRACT

Melanopsin, an atypical vertebrate visual pigment, mediates non-image-forming light responses including circadian photoentrainment and pupillary light reflexes and contrast detection for image formation. Melanopsin-expressing intrinsically photosensitive retinal ganglion cells are characterized by sluggish activation and deactivation of their light responses. The molecular determinants of mouse melanopsin's deactivation have been characterized (i.e., C-terminal phosphorylation and ß-arrestin binding), but a detailed analysis of melanopsin's activation is lacking. We propose that an extended third cytoplasmic loop is adjacent to the proximal C-terminal region of mouse melanopsin in the inactive conformation, which is stabilized by the ionic interaction of these two regions. This model is supported by site-directed spin labeling and electron paramagnetic resonance spectroscopy of melanopsin, the results of which suggests a high degree of steric freedom at the third cytoplasmic loop, which is increased upon C-terminus truncation, supporting the idea that these two regions are close in three-dimensional space in wild-type melanopsin. To test for a functionally critical C-terminal conformation, calcium imaging of melanopsin mutants including a proximal C-terminus truncation (at residue 365) and proline mutation of this proximal region (H377P, L380P, Y382P) delayed melanopsin's activation rate. Mutation of all potential phosphorylation sites, including a highly conserved tyrosine residue (Y382), into alanines also delayed the activation rate. A comparison of mouse melanopsin with armadillo melanopsin-which has substitutions of various potential phosphorylation sites and a substitution of the conserved tyrosine-indicates that substitution of these potential phosphorylation sites and the tyrosine residue result in dramatically slower activation kinetics, a finding that also supports the role of phosphorylation in signaling activation. We therefore propose that melanopsin's C-terminus is proximal to intracellular loop 3, and C-terminal phosphorylation permits the ionic interaction between these two regions, thus forming a stable structural conformation that is critical for initiating G-protein signaling.


Subject(s)
Light Signal Transduction , Rod Opsins , Animals , Light , Mice , Phosphorylation , Retinal Ganglion Cells/metabolism , Rod Opsins/genetics , Rod Opsins/metabolism
6.
J Magn Reson ; 288: 28-36, 2018 03.
Article in English | MEDLINE | ID: mdl-29414061

ABSTRACT

We present a 34 GHz continuous wave (CW)/pulsed electron paramagnetic resonance (EPR) spectrometer capable of pulse-shaping that is based on a versatile microwave bridge design. The bridge radio frequency (RF)-in/RF-out design (500 MHz to 1 GHz input/output passband, 500 MHz instantaneous input/output bandwidth) creates a flexible platform with which to compare a variety of excitation and detection methods utilizing commercially available equipment external to the bridge. We use three sources of RF input to implement typical functions associated with CW and pulse EPR spectroscopic measurements. The bridge output is processed via high speed digitizer and an in-phase/quadrature (I/Q) demodulator for pulsed work or sent to a wideband, high dynamic range log detector for CW. Combining this bridge with additional commercial hardware and new acquisition and control electronics, we have designed and constructed an adaptable EPR spectrometer that builds upon previous work in the literature and is functionally comparable to other available systems.

7.
Proteins ; 82(12): 3327-34, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25204809

ABSTRACT

Multiple MD simulations were performed for the full-length wild-type A1, the full length A1 mutations S27E and S27A, as well as the N-terminal peptide (AMVSEFLKQAWFIDNEEQEYIKTVKGS²7KGGPGSAVSPYPTFN) of wild-type A1 and mutations S27E and S27A. The MD simulation trajectories of about 350 ns were generated and analyzed to examine the changes of core domain calcium binding affinity, core domain and N-terminal domain structures, and N-terminal domain orientation. Our results indicated that S27A and S27E mutations caused little changes on the calcium-binding affinity of the core domain of A1. However, the S27A mutation made the N-terminal domain of A1 less helical, and made the N-terminal domain migrate faster toward the core domain; these impacts on A1 are beneficial to the membrane aggregation process. On the contrary, the S27E mutation made the N-terminal domain of A1 more stable, and hindered the migration to the core domain; these changes on A1 are antagonistic for the membrane aggregation process. Our results using MD simulations provide an atomistic explanation for experimental observations that the S27E mutant showed a higher calcium concentration requirement and lower maximal extent of aggregation, while the wild-type and two mutants S27E and S27A required identical calcium concentrations for liposome binding.


Subject(s)
Annexin A1/chemistry , Calcium Signaling , Membrane Fusion , Models, Molecular , Protein Processing, Post-Translational , Serine/metabolism , Amino Acid Substitution , Animals , Annexin A1/genetics , Annexin A1/metabolism , Calcium/metabolism , Cluster Analysis , Databases, Protein , Liposomes , Molecular Dynamics Simulation , Mutation , Phosphorylation , Protein Conformation , Protein Stability , Protein Structure, Tertiary , Serine/chemistry , Sus scrofa
8.
Proteins ; 82(11): 2936-42, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24913225

ABSTRACT

Annexin A1 has been shown to cause membrane aggregation and fusion, yet the mechanism of these activities is not clearly understood. In this work, molecular dynamics simulations were performed on monomeric annexin A1 positioned between two negatively charged monolayers using AMBER's all atom force field to gain insight into the mechanism of fusion. Each phospolipid monolayer was made up of 180 DOPC molecules and 45 DOPG molecules to achieve a 4:1 ratio. The space between the two monolayers was explicitly solvated using TIP3P waters in a rectilinear box. The constructed setup contained up to 0.14 million atoms. Application of periodic boundary conditions to the simulation setup gave the desired effect of two continuous membrane bilayers. Nonbonded interactions were calculated between the N-terminal residues and the bottom layer of phospholipids, which displayed a strong attraction of K26 and K29 to the lipid head-groups. The side-chains of these two residues were observed to orient themselves in close proximity (∼3.5 Å) with the polar head-groups of the phospholipids.


Subject(s)
Annexin A1/chemistry , Annexin A1/metabolism , Cell Membrane/metabolism , Binding Sites , Lysine/chemistry , Membrane Fusion , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phosphatidylglycerols/chemistry , Protein Structure, Tertiary , Static Electricity
9.
J Biol Chem ; 288(38): 26987-27001, 2013 Sep 20.
Article in English | MEDLINE | ID: mdl-23897835

ABSTRACT

In Escherichia coli and the majority of ß- and γ-proteobacteria, the fourth step of lipid A biosynthesis, i.e. cleavage of the pyrophosphate group of UDP-2,3-diacyl-GlcN, is carried out by LpxH. LpxH has been previously suggested to contain signature motifs found in the calcineurin-like phosphoesterase (CLP) family of metalloenzymes; however, it cleaves a pyrophosphate bond instead of a phosphoester bond, and its substrate contains nucleoside diphosphate moieties more common to the Nudix family rather than to the CLP family. Furthermore, the extent of biochemical data fails to demonstrate a significant level of metal activation in enzymatic assays, which is inconsistent with the behavior of a metalloenzyme. Here, we report cloning, purification, and detailed enzymatic characterization of Haemophilus influenzae LpxH (HiLpxH). HiLpxH shows over 600-fold stimulation of hydrolase activity in the presence of Mn(2+). EPR studies reveal the presence of a Mn(2+) cluster in LpxH. Finally, point mutants of residues in the conserved metal-binding motifs of the CLP family greatly inhibit HiLpxH activity, highlighting their importance in enzyme function. Contrary to previous analyses of LpxH, we find HiLpxH does not obey surface dilution kinetics. Overall, our work unambiguously establishes LpxH as a calcineurin-like phosphoesterase containing a Mn(2+) cluster coordinated by conserved residues. These results set the scene for further structural investigation of the enzyme and for design of novel antibiotics targeting lipid A biosynthesis.


Subject(s)
Bacterial Proteins/chemistry , Haemophilus influenzae/enzymology , Lipid A/biosynthesis , Manganese/chemistry , Pyrophosphatases/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/isolation & purification , Bacterial Proteins/metabolism , Catalysis , Cloning, Molecular , Gene Expression , Haemophilus influenzae/genetics , Lipid A/chemistry , Lipid A/metabolism , Manganese/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/isolation & purification , Pyrophosphatases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...