Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 74
Filter
1.
Antibiotics (Basel) ; 11(2)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35203727

ABSTRACT

Comparative transcriptome analysis and de novo short-read assembly of S. aureus Newman strains revealed significant transcriptional changes in response to the exposure to triple-acting staphylolytic peptidoglycan hydrolase (PGH) 1801. Most altered transcriptions were associated with the membrane, cell wall, and related genes, including amidase, peptidase, holin, and phospholipase D/transphosphatidylase. The differential expression of genes obtained from RNA-seq was confirmed by reverse transcription quantitative PCR. Moreover, some of these gene expression changes were consistent with the observed structural perturbations at the DNA and RNA levels. These structural changes in the genes encoding membrane/cell surface proteins and altered gene expressions are the candidates for resistance to these novel antimicrobials. The findings in this study could provide insight into the design of new antimicrobial agents.

2.
Int J Mol Sci ; 22(17)2021 Sep 02.
Article in English | MEDLINE | ID: mdl-34502443

ABSTRACT

Clostridium botulinum is a Gram-positive, anaerobic, spore-forming bacterium capable of producing botulinum toxin and responsible for botulism of humans and animals. Phage-encoded enzymes called endolysins, which can lyse bacteria when exposed externally, have potential as agents to combat bacteria of the genus Clostridium. Bioinformatics analysis revealed in the genomes of several Clostridium species genes encoding putative N-acetylmuramoyl-l-alanine amidases with anti-clostridial potential. One such enzyme, designated as LysB (224-aa), from the prophage of C. botulinum E3 strain Alaska E43 was chosen for further analysis. The recombinant 27,726 Da protein was expressed and purified from E. coli Tuner(DE3) with a yield of 37.5 mg per 1 L of cell culture. Size-exclusion chromatography and analytical ultracentrifugation experiments showed that the protein is dimeric in solution. Bioinformatics analysis and results of site-directed mutagenesis studies imply that five residues, namely H25, Y54, H126, S132, and C134, form the catalytic center of the enzyme. Twelve other residues, namely M13, H43, N47, G48, W49, A50, L73, A75, H76, Q78, N81, and Y182, were predicted to be involved in anchoring the protein to the lipoteichoic acid, a significant component of the Gram-positive bacterial cell wall. The LysB enzyme demonstrated lytic activity against bacteria belonging to the genera Clostridium, Bacillus, Staphylococcus, and Deinococcus, but did not lyse Gram-negative bacteria. Optimal lytic activity of LysB occurred between pH 4.0 and 7.5 in the absence of NaCl. This work presents the first characterization of an endolysin derived from a C. botulinum Group II prophage, which can potentially be used to control this important pathogen.


Subject(s)
Clostridium botulinum type E/enzymology , Endopeptidases/metabolism , N-Acetylmuramoyl-L-alanine Amidase/metabolism , Amino Acid Sequence , Catalytic Domain , Clostridium/drug effects , Clostridium/ultrastructure , Endopeptidases/chemistry , Endopeptidases/isolation & purification , Endopeptidases/pharmacology , Lipopolysaccharides/metabolism , Microbial Sensitivity Tests , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/isolation & purification , N-Acetylmuramoyl-L-alanine Amidase/pharmacology , Prophages/enzymology , Teichoic Acids/metabolism
3.
CRISPR J ; 3(6): 523-534, 2020 12.
Article in English | MEDLINE | ID: mdl-33252243

ABSTRACT

Selective breeding and genetic modification have been the cornerstone of animal agriculture. However, the current strategy of breeding animals over multiple generations to introgress novel alleles is not practical in addressing global challenges such as climate change, pandemics, and the predicted need to feed a population of 9 billion by 2050. Consequently, genome editing in zygotes to allow for seamless introgression of novel alleles is required, especially in cattle with long generation intervals. We report for the first time the use of CRISPR-Cas genome editors to introduce novel PRNP allelic variants that have been shown to provide resilience towards human prion pandemics. From one round of embryo injections, we have established six pregnancies and birth of seven edited offspring, with two founders showing >90% targeted homology-directed repair modifications. This study lays out the framework for in vitro optimization, unbiased deep-sequencing to identify editing outcomes, and generation of high frequency homology-directed repair-edited calves.


Subject(s)
Gene Editing/methods , Genetic Engineering/methods , Selective Breeding/genetics , Alleles , Animals , CRISPR-Cas Systems/genetics , Cattle , Clustered Regularly Interspaced Short Palindromic Repeats/genetics , Embryo, Mammalian , Genomics/methods , Zygote/metabolism
4.
BMC Biotechnol ; 19(1): 101, 2019 12 21.
Article in English | MEDLINE | ID: mdl-31864319

ABSTRACT

BACKGROUND: Clostridium perfringens, a gram-positive, anaerobic, rod-shaped bacterium, is the third leading cause of human foodborne bacterial disease and a cause of necrotic enteritis in poultry. It is controlled using antibiotics, widespread use of which may lead to development of drug-resistant bacteria. Bacteriophage-encoded endolysins that degrade peptidoglycans in the bacterial cell wall are potential replacements for antibiotics. Phage endolysins have been identified that exhibit antibacterial activities against several Clostridium strains. RESULTS: An Escherichia coli codon-optimized gene encoding the glycosyl hydrolase endolysin (PlyCP41) containing a polyhistidine tag was expressed in E. coli. In addition, The E. coli optimized endolysin gene was engineered for expression in plants (PlyCP41p) and a plant codon-optimized gene (PlyCP41pc), both containing a polyhistidine tag, were expressed in Nicotiana benthamiana plants using a potato virus X (PVX)-based transient expression vector. PlyCP41p accumulated to ~ 1% total soluble protein (100µg/gm f. wt. leaf tissue) without any obvious toxic effects on plant cells, and both the purified protein and plant sap containing the protein lysed C. perfringens strain Cp39 in a plate lysis assay. Optimal systemic expression of PlyCP41p was achieved at 2 weeks-post-infection. PlyCP41pc did not accumulate to higher levels than PlyCP41p in infected tissue. CONCLUSION: We demonstrated that functionally active bacteriophage PlyCP41 endolysin can be produced in systemically infected plant tissue with potential for use of crude plant sap as an effective antimicrobial agent against C. perfringens.


Subject(s)
Bacteriophages/enzymology , Clostridium perfringens/drug effects , Endopeptidases/genetics , Nicotiana/genetics , Viral Proteins/genetics , Bacteriophages/genetics , Clostridium perfringens/physiology , Endopeptidases/chemistry , Endopeptidases/metabolism , Endopeptidases/pharmacology , Gene Expression , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/metabolism , Protein Engineering , Nicotiana/chemistry , Nicotiana/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Viral Proteins/pharmacology
5.
Antibiotics (Basel) ; 8(4)2019 Nov 08.
Article in English | MEDLINE | ID: mdl-31717357

ABSTRACT

Clostridium perfringens is a bacterial pathogen that causes necrotic enteritis in poultry and livestock, and is a source of food poisoning and gas gangrene in humans. As the agriculture industry eliminates the use of antibiotics in animal feed, alternatives to antibiotics will be needed. Bacteriophage endolysins are enzymes used by the virus to burst their bacterial host, releasing bacteriophage particles. This type of enzyme represents a potential replacement for antibiotics controlling C. perfringens. As animal feed is often heat-treated during production of feed pellets, thermostable enzymes would be preferred for use in feed. To create thermostable endolysins that target C. perfringens, thermophile endolysin catalytic domains were fused to cell wall binding domains from different C. perfringens prophage endolysins. Three thermostable catalytic domains were used, two from prophage endolysins from two Geobacillus strains, and a third endolysin from the deep-sea thermophilic bacteriophage Geobacillus virus E2 (GVE2). These domains harbor predicted L-alanine-amidase, glucosaminidase, and L-alanine-amidase activities, respectively and degrade the peptidoglycan of the bacterial cell wall. The cell wall binding domains were from C. perfringens prophage endolysins (Phage LYtic enzymes; Ply): PlyCP18, PlyCP10, PlyCP33, PlyCP41, and PlyCP26F. The resulting fifteen chimeric proteins were more thermostable than the native C. perfringens endolysins, and killed swine and poultry disease-associated strains of C. perfringens.

6.
Antibiotics (Basel) ; 8(3)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31546935

ABSTRACT

Bacillus cereus, a Gram-positive bacterium, is an agent of food poisoning. B. cereus is closely related to Bacillus anthracis, a deadly pathogen for humans, and Bacillus thuringenesis, an insect pathogen. Due to the growing prevalence of antibiotic resistance in bacteria, alternative antimicrobials are needed. One such alternative is peptidoglycan hydrolase enzymes, which can lyse Gram-positive bacteria when exposed externally. A bioinformatic search for bacteriolytic enzymes led to the discovery of a gene encoding an endolysin-like endopeptidase, LysBC17, which was then cloned from the genome of B. cereus strain Bc17. This gene is also present in the B. cereus ATCC 14579 genome. The gene for LysBC17 encodes a protein of 281 amino acids. Recombinant LysBC17 was expressed and purified from E. coli. Optimal lytic activity against B. cereus occurred between pH 7.0 and 8.0, and in the absence of NaCl. The LysBC17 enzyme had lytic activity against strains of B. cereus, B. anthracis, and other Bacillus species.

7.
AIMS Microbiol ; 5(2): 158-175, 2019.
Article in English | MEDLINE | ID: mdl-31384710

ABSTRACT

The increasing spread of antibiotic-resistant microorganisms has led to the necessity of developing alternative antimicrobial treatments. The use of peptidoglycan hydrolases is a promising approach to combat bacterial infections. In our study, we constructed a 2 kb-triple-acting fusion gene (TF) encoding the N-terminal amidase-5 domain of streptococcal LambdaSA2 prophage endolysin (D-glutamine-L-lysin endopeptidase), a mid-protein amidase-2 domain derived from the staphylococcal phage 2638A endolysin (N-acetylmuramoyl-L-alanine amidase) and the mature version (246 residues) of the Staphylococcus simulans Lysostaphin bacteriocin (glycyl-glycine endopeptidase) at the C-terminus. The TF gene was expressed in Nicotiana benthamiana plants using the non-replicating Cowpea mosaic virus (CPMV)-based vector pEAQ-HT and the replicating Alternanthera mosaic virus (AltMV)-based pGD5TGB1L8823-MCS-CP3 vector, and in Escherichia coli using pET expression vectors pET26b+ and pET28a+. The resulting poor expression of this fusion protein in plants prompted the construction of a TF gene codon-optimized for expression in tobacco plants, resulting in an improved codon adaptation index (CAI) from 0.79 (TF gene) to 0.93 (TFnt gene). Incorporation of the TFnt gene into the pEAQ-HT vector, followed by transient expression in N. benthamiana, led to accumulation of TFnt to an approximate level of 0.12 mg/g of fresh leaf weight. Antimicrobial activity of purified plant- and bacterial-produced TFnt proteins was assessed against two strains of Gram-positive Staphylococcus aureus 305 and Newman. The results showed that plant-produced TFnt protein was preferentially active against S. aureus 305, showing 14% of growth inhibition, while the bacterial-produced TFnt revealed significant antimicrobial activity against both strains, showing 68 (IC50 25 µg/ml) and 60% (IC50 71 µg/ml) growth inhibition against S. aureus 305 and Newman, respectively. Although the combination of codon optimization and transient expression using the non-replicating pEAQ-HT expression vector facilitated production of the TFnt protein in plants, the most functionally active antimicrobial protein was obtained using the prokaryotic expression system.

8.
Methods Mol Biol ; 1898: 107-115, 2019.
Article in English | MEDLINE | ID: mdl-30570727

ABSTRACT

Zymogram or zymography is an electrophoretic technique based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), which enables visualization of enzymatically active protein species separated by molecular mass. The strategy is to perform SDS-PAGE on the proteins in question while including an opaque substrate of the enzyme embedded within the polyacrylamide gel. Here, we describe a zymogram protocol for phage lytic proteins (peptidoglycan hydrolases) using peptidoglycan (or whole cells) from a susceptible gram-positive bacterial species as substrate. Proteins are prepared and analyzed simultaneously on two separate gels: First, standard denaturing SDS-PAGE followed by conventional protein staining (e.g., Coomassie) is run to identify the migration pattern of the protein species in the sample; second, the zymogram gel in which either cells or peptidoglycan from a susceptible bacterium have embedded in the SDS gel matrix is performed. After electrophoresis, the SDS is removed from the zymogram gel, allowing the proteins (now separated by molecular mass) to assume an active conformation and ultimately digest the opaque substrate (yielding a nonopaque product). This results in a cleared spot in an otherwise opaque gel which corresponds to the location of an enzymatically active protein species. This assay can be used to qualitatively assay the enzymatic activity of endolysins from cell extracts, or to identify virion-associated peptidoglycan hydrolases in phage particles.


Subject(s)
Bacteriophages/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Peptidoglycan/chemistry , Viral Proteins/chemistry , Cell Wall/chemistry , Hydrolysis , N-Acetylmuramoyl-L-alanine Amidase , Sodium Dodecyl Sulfate/chemistry
9.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Article in English | MEDLINE | ID: mdl-30010898

ABSTRACT

Clostridium perfringens, a spore-forming anaerobic bacterium, causes food poisoning and gas gangrene in humans and is an agent of necrotizing enteritis in poultry, swine and cattle. Endolysins are peptidoglycan hydrolases from bacteriophage that degrade the bacterial host cell wall causing lysis and thus harbor antimicrobial therapy potential. The genes for the PlyCP10 and PlyCP41 endolysins were found in prophage regions of the genomes from C. perfringens strains Cp10 and Cp41, respectively. The gene for PlyCP10 encodes a protein of 351 amino acids, while the gene for PlyCP41 encodes a protein of 335 amino acids. Both proteins harbor predicted glycosyl hydrolase domains. Recombinant PlyCP10 and PlyCP41 were expressed in E. coli with C-terminal His-tags, purified by nickel chromatography and characterized in vitro. PlyCP10 activity was greatest at pH 6.0, and between 50 and 100 mM NaCl. PlyCP41 activity was greatest between pH 6.5 and 7.0, and at 50 mM NaCl, with retention of activity as high as 600 mM NaCl. PlyCP10 lost most of its activity above 42°C, whereas PlyCP41 survived at 50°C for 30 min and still retained >60% activity. Both enzymes had lytic activity against 75 C. perfringens strains (isolates from poultry, swine and cattle) suggesting therapeutic potential.


Subject(s)
Bacteriophages/enzymology , Clostridium perfringens/drug effects , Endopeptidases/chemistry , Endopeptidases/pharmacology , Gas Gangrene/veterinary , Prophages/enzymology , Viral Proteins/chemistry , Viral Proteins/pharmacology , Animals , Bacteriolysis , Bacteriophages/chemistry , Bacteriophages/classification , Bacteriophages/genetics , Cattle , Clostridium perfringens/isolation & purification , Clostridium perfringens/physiology , Endopeptidases/genetics , Endopeptidases/metabolism , Enzyme Stability , Gas Gangrene/microbiology , Gas Gangrene/therapy , Hydrogen-Ion Concentration , Phylogeny , Poultry , Prophages/chemistry , Prophages/classification , Prophages/genetics , Protein Domains , Swine , Viral Proteins/genetics , Viral Proteins/metabolism
10.
Sci Rep ; 8(1): 3582, 2018 02 26.
Article in English | MEDLINE | ID: mdl-29483633

ABSTRACT

The domestic pig is an attractive model for biomedical research because of similarities in anatomy and physiology to humans. However, key gaps remain in our understanding of the role of developmental genes in pig, limiting its full potential. In this publication, the role of NEUROGENIN 3 (NGN3), a transcription factor involved in endocrine pancreas development has been investigated by CRISPR/Cas9 gene ablation. Precomplexed Cas9 ribonucleoproteins targeting NGN3 were injected into in vivo derived porcine embryos, and transferred into surrogate females. On day 60 of pregnancy, nine fetuses were collected for genotypic and phenotypic analysis. One of the piglets was identified as an in-frame biallelic knockout (Δ2/Δ2), which showed a loss of putative NGN3-downstream target genes: NEUROD1 and PAX4, as well as insulin, glucagon, somatostatin and pancreatic polypeptide-Y. Fibroblasts from this fetus were used in somatic cell nuclear transfer to generate clonal animals to qualify the effect of mutation on embryonic lethality. Three live piglets were born, received colostrum and suckled normally, but experienced extreme weight loss over a 24 to 36-hour period requiring humane euthanasia. Expression of pancreatic endocrine hormones: insulin, glucagon, and somatostatin were lost. The data support a critical role of NGN3 in porcine endocrine pancreas development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , CRISPR-Associated Protein 9/genetics , Endocrine Cells/metabolism , Islets of Langerhans/growth & development , Mutation , Nerve Tissue Proteins/genetics , Swine/embryology , Swine/genetics , Animals , Female , Gene Expression , Gene Knockout Techniques , Genotype , Glucagon/metabolism , Insulin/metabolism , Paired Box Transcription Factors/genetics , Pregnancy , Somatostatin/metabolism
11.
Appl Environ Microbiol ; 84(1)2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29320762

ABSTRACT

Peptidoglycan hydrolases (PGHs) have been suggested as novel therapeutics for the treatment of bovine mastitis. However, activity in the presence of cow's milk is an important requirement for drugs administered into the bovine udder. We have used a microtiter plate-based protocol to screen a library of >170 recombinant PGHs, including engineered bacteriophage endolysins, for enzymes with activity against Staphylococcus aureus in milk. Eight suitable PGH constructs were identified by this approach, and their efficacies against S. aureus in heat-treated milk were compared by time-kill assays. The two most active enzymes (lysostaphin and CHAPK_CWT-LST) reduced S. aureus numbers in milk to undetectable levels within minutes at nanomolar concentrations. Due to their different peptidoglycan cleavage sites, these PGH constructs revealed synergistic activity, as demonstrated by checkerboard assays, spot assays, and time-kill experiments. Furthermore, they proved active against a selection of staphylococcal mastitis isolates from different geographical regions when applied individually or in synergistic combination. The PGH combination completely eradicated S. aureus from milk: no more bacteria were detected within 24 h after the addition of the enzymes, corresponding to a reduction of >9 log units from the level in the control. Efficacy was also retained at different inoculum levels (3 log versus 6 log CFU/ml) and when S. aureus was grown in milk as opposed to broth prior to the experiments. In raw cow's milk, CHAPK_CWT-LST showed reduced efficacy, whereas lysostaphin retained its activity, reducing bacterial numbers by >3.5 log units within 3 h.IMPORTANCE Staphylococci, and S. aureus in particular, are a major cause of bovine mastitis, an inflammation of the mammary gland in cows that is associated with high costs and risks for consumers of milk products. S. aureus-induced mastitis, commonly treated by intramammary infusion of antibiotics, is characterized by low cure rates and increasing antibiotic resistance in bacteria. Therefore, alternative treatment options are highly desirable. PGHs, including bacteriophage endolysins, rapidly and specifically kill selected pathogens by degrading their cell walls and are refractory to resistance development; thus, they have promise as novel antibacterial agents. This study employed a screening approach to identify PGH constructs with high staphylolytic activity in cow's milk among a large collection of enzymes. Our results suggest that the most promising enzymes identified by this strategy hold potential as novel mastitis therapeutics and thus support their further characterization in animal models.

13.
Mol Reprod Dev ; 84(6): 468-485, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28332752

ABSTRACT

Thirteen independent induced bovine trophectroderm (iBT) cell lines were established by reprogramming bovine fetal liver-derived fibroblasts after viral-vector transduction with either six or eight factors, including POU5F1 (OCT4), KLF4, SOX2, MYC, NANOG, LIN28, SV40 large T antigen, and hTERT. Light- and electron-microscopy analysis showed that the iBT cells had epithelial cell morphology typical of bovine trophectoderm cells. Reverse-transcription-PCR assays indicated that all of the cell lines expressed interferon-tau (IFNT) at passages 1 or 2. At later passages (≥ passage 8), however, immunoblot and antiviral activity assays revealed that more than half of the iBT cell lines had stopped expressing IFNT. Messenger RNAs specific to trophectoderm differentiation and function were found in the iBT cell lines, and 2-dimensional-gel analysis for cellular proteins showed an expression pattern similar to that of trophectoderm cell lines derived from bovine blastocysts. Integration of some of the human reprogramming factors, including POU5F1, KLF4, SOX2, MYC, NANOG, and LIN28, were detected by PCR, but their transcription was mostly absent in the iBT cell lines. Gene expression assessment of endogenous bovine reprogramming factor orthologs revealed endogenous bLIN28 and bMYC transcripts in all; bSOX2 and bNANOG in none; and bKLF4 and bPOU5F1 in less than half of the iBT cell lines. These results demonstrate that bovine trophectoderm can be induced via reprogramming factor expression from bovine liver-derived fibroblasts, although other fibroblast populations-e.g., derived from fetal thigh tissue-may produce similar results, albeit at lower frequencies.


Subject(s)
Cellular Reprogramming Techniques , Cellular Reprogramming , Fibroblasts/metabolism , Induced Pluripotent Stem Cells/metabolism , Transcription Factors , Animals , Cattle , Fibroblasts/cytology , Induced Pluripotent Stem Cells/cytology , Kruppel-Like Factor 4 , Transcription Factors/biosynthesis , Transcription Factors/genetics
14.
Appl Environ Microbiol ; 83(7)2017 04 01.
Article in English | MEDLINE | ID: mdl-28159785

ABSTRACT

Peptidoglycan hydrolases (PGHs) have been suggested as novel therapeutics for the treatment of bovine mastitis. However, activity in the presence of cow's milk is an important requirement for drugs administered into the bovine udder. We have screened a library of >170 recombinant PGHs, including engineered bacteriophage endolysins, for enzymes with activity against Staphylococcus aureus in milk, using a microtiter plate-based protocol. Nine suitable PGH constructs were identified by this approach and further compared in time-kill assays for their efficacy against S. aureus in heat-treated milk. The three most active enzymes (lysostaphin, Ami2638A, and CHAPK_CWT-LST) reduced S. aureus in milk to undetectable numbers within minutes at nanomolar concentrations. Due to their different peptidoglycan cleavage sites, these PGH constructs revealed synergistic activity in most combinations, as demonstrated by checkerboard assays, spot assays, and time-kill experiments. Furthermore, they proved active against a selection of staphylococcal mastitis isolates from different geographical regions when applied individually or in synergistic combination. The most effective PGH combination completely eradicated S. aureus from milk, with no more bacteria being detected within 24 h after addition of the enzymes, corresponding to a reduction of >9 log units compared to the control. Efficacy was also retained at different inoculum levels (3 versus 6 log CFU/ml) and when S. aureus was grown in milk as opposed to broth prior to the experiments. In raw cow's milk, CHAPK_CWT-LST showed reduced efficacy, whereas both Ami2638A and lysostaphin retained their activity, reducing bacterial numbers by >3.5 log units within 3 h.IMPORTANCE Staphylococci and S. aureus in particular are a major cause of bovine mastitis, an inflammation of the mammary gland in cows associated with high costs and risks for consumers of milk products. S. aureus-induced mastitis, commonly treated by intramammary infusion of antibiotics, is characterized by low cure rates and increasing antibiotic resistance in bacteria. Therefore, alternative treatment options are highly desirable. PGHs, including bacteriophage endolysins, rapidly and specifically kill selected pathogens by degrading their cell wall and are refractory to resistance development, therefore holding promise as novel antibacterial agents. This study employed a screening approach to identify PGH constructs with high staphylolytic activity in cow's milk within a large collection of enzymes. Our results suggest that the most promising enzymes identified by this strategy hold potential as novel mastitis therapeutics and support their further characterization in animal models.


Subject(s)
Milk/microbiology , N-Acetylmuramoyl-L-alanine Amidase/metabolism , N-Acetylmuramoyl-L-alanine Amidase/pharmacology , Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/microbiology , Drug Discovery , Drug Synergism , Female , Gene Library , Hot Temperature , Mammary Glands, Animal/microbiology , Mastitis, Bovine/drug therapy , Mastitis, Bovine/microbiology , Microbial Sensitivity Tests , N-Acetylmuramoyl-L-alanine Amidase/chemistry , N-Acetylmuramoyl-L-alanine Amidase/genetics , Peptidoglycan/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/veterinary
15.
Sci Rep ; 7: 42458, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28195163

ABSTRACT

The domestic pig is an important "dual purpose" animal model for agricultural and biomedical applications. There is an emerging consensus in the biomedical community for the use of large animal models such as pigs to either serve as an alternative, or complement investigations from the mouse. However, the use of pig has not proven popular due to technical difficulties and time required in generating models with desired genetic modifications. In this regard, the ability to directly modify the genome in the zygote and generate edited animals is highly desirable. This report demonstrates for the first time, the generation of gene targeted animals by direct injection of Cas9 ribonucleoprotein complex and short stretches of DNA sequences into porcine zygotes. The Cas9 protein from Streptococcus pyogenes was pre-complexed with a single guide RNA targeting downstream of the ubiquitously expressed COL1A gene, and co-injected with a single-stranded repair template into porcine zygotes. Using this approach a line of pigs that carry pseudo attP sites within the COL1A locus to enable phiC31 integrase mediated introduction of transgenes has been generated. This new route for genome engineering in pigs via zygote injection should greatly enhance applications in both agriculture and biomedicine.


Subject(s)
CRISPR-Cas Systems , Ribonucleoproteins/genetics , Zygote/metabolism , Alleles , Amino Acid Sequence , Animals , Collagen Type I/genetics , Gene Knock-In Techniques , Gene Knockout Techniques , Gene Order , Gene Targeting , Genetic Loci , Genetic Vectors/genetics , Homologous Recombination , Multiprotein Complexes , Protein Binding , Repressor Proteins/chemistry , Repressor Proteins/genetics , Swine
16.
Sci Rep ; 7: 40176, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28071690

ABSTRACT

Genome editing tools have revolutionized the generation of genetically modified animals including livestock. In particular, the domestic pig is a proven model of human physiology and an agriculturally important species. In this study, we utilized the CRISPR/Cas9 system to edit the NANOS2 gene in pig embryos to generate offspring with mono-allelic and bi-allelic mutations. We found that NANOS2 knockout pigs phenocopy knockout mice with male specific germline ablation but other aspects of testicular development are normal. Moreover, male pigs with one intact NANOS2 allele and female knockout pigs are fertile. From an agriculture perspective, NANOS2 knockout male pigs are expected to serve as an ideal surrogate for transplantation of donor spermatogonial stem cells to expand the availability of gametes from genetically desirable sires.


Subject(s)
Animals, Genetically Modified , Gene Knockout Techniques , RNA-Binding Proteins/genetics , Sus scrofa/genetics , Animals , CRISPR-Cas Systems , Fertility , Infertility, Male , Male
17.
Int J Mol Sci ; 17(12)2016 Dec 03.
Article in English | MEDLINE | ID: mdl-27918485

ABSTRACT

The domestic pig is an ideal "dual purpose" animal model for agricultural and biomedical research. With the availability of genome editing tools such as clustered regularly interspaced short palindromic repeat (CRISPR) and associated nuclease Cas9 (CRISPR/Cas9), it is now possible to perform site-specific alterations with relative ease, and will likely help realize the potential of this valuable model. In this article, we investigated for the first time a combination of somatic cell nuclear transfer (SCNT) and direct injection of CRISPR/Cas ribonucleoprotein complex targeting GRB10 into the reconstituted oocytes to generate GRB10 ablated Ossabaw fetuses. This strategy resulted in highly efficient (100%) generation of biallelic modifications in cloned fetuses. By combining SCNT with CRISPR/Cas9 microinjection, genome edited animals can now be produced without the need to manage a founder herd, while simultaneously eliminating the need for laborious in vitro culture and screening. Our approach utilizes standard cloning techniques while simultaneously performing genome editing in the cloned zygotes of a large animal model for agriculture and biomedical applications.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Genome , Microinjections/methods , Nuclear Transfer Techniques , Sus scrofa/genetics , Animals , Cloning, Organism , Genotyping Techniques , RNA, Guide, Kinetoplastida/metabolism , Zygote/metabolism
18.
FEMS Microbiol Lett ; 363(19)2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27634307

ABSTRACT

Bacteriophages produce endolysins (peptidoglycan hydrolases) to lyse the host cell from within and release nascent bacteriophage particles. Recombinant endolysins can lyse Gram-positive bacteria when added exogenously. As a potential alternative antimicrobial, we cloned and expressed the enterococcal VD13 bacteriophage endolysin. VD13 endolysin has a CHAP catalytic domain with 92% identity with the bacteriophage IME-EF1 endolysin. The predicted size of VD13 endolysin is ∼27 kDa as verified by SDS-PAGE. The VD13 endolysin lyses Enterococcus faecalis strains, but not E. faecium or other non-enterococci. VD13 endolysin has activity from pH 4 to pH 8, with peak activity at pH 5, and exhibits greater activity in the presence of calcium. Optimum activity at pH 5 occurs in the absence of NaCl. VD13 endolysin, in ammonium acetate (C2H3O2NH4) calcium chloride (CaCl2) buffer pH 5, is stimulated to higher activity upon heating at temperatures up to 65°C for 30 min, whereas activity is lost upon heating to 42°C, in pH 7 buffer.

19.
Appl Biochem Biotechnol ; 180(3): 544-557, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27168405

ABSTRACT

A staphylolytic fusion protein (chimeric enzyme K-L) was created, harboring three unique lytic activities composed of the LysK CHAP endopeptidase, and amidase domains, and the lysostaphin glycyl-glycine endopeptidase domain. To assess the potential of possible therapeutic applications, the kinetic behavior of chimeric enzyme K-L was investigated. As a protein antimicrobial, with potential antigenic properties, the biophysical effect of including chimeric enzyme K-L in anionic polymer matrices that might help reduce the immunogenicity of the enzyme was tested. Chimeric enzyme K-L reveals a high lytic activity under the following optimal (opt) conditions: pHopt 6.0-10.0, topt 20-30 °C, NaClopt 400-800 mM. At the working temperature of 37 °C, chimeric enzyme K-L is inactivated by a monomolecular mechanism and possesses a high half-inactivation time of 12.7 ± 3.0 h. At storage temperatures of 22 and 4 °C, a complex mechanism (combination of monomolecular and bimolecular mechanisms) is involved in the chimeric enzyme K-L inactivation. The optimal storage conditions under which the enzyme retains 100 % activity after 140 days of incubation (4 °C, the enzyme concentration of 0.8 mg/mL, pH 6.0 or 7.5) were established. Chimeric enzyme K-L is included in complexes with block-copolymers of poly-L-glutamic acid and polyethylene glycol, while the enzyme activity and stability are retained, thus suggesting methods to improve the application of this fusion as an effective antimicrobial agent.


Subject(s)
Anions/pharmacology , Bacterial Proteins/pharmacology , Bacteriolysis/drug effects , Lysostaphin/pharmacology , Polymers/pharmacology , Recombinant Fusion Proteins/pharmacology , Staphylococcus aureus/cytology , Enzyme Activation/drug effects , Enzyme Stability/drug effects , Hydrogen-Ion Concentration , Kinetics , Particle Size , Sodium Chloride/pharmacology , Staphylococcus aureus/drug effects , Temperature
20.
Int J Mol Sci ; 17(6)2016 May 26.
Article in English | MEDLINE | ID: mdl-27240344

ABSTRACT

The pig is an ideal large animal model for genetic engineering applications. A relatively short gestation interval and large litter size makes the pig a conducive model for generating and propagating genetic modifications. The domestic pig also shares close similarity in anatomy, physiology, size, and life expectancy, making it an ideal animal for modeling human diseases. Often, however, the technical difficulties in generating desired genetic modifications such as targeted knockin of short stretches of sequences or transgenes have impeded progress in this field. In this study, we have investigated and compared the relative efficiency of CRISPR/Cas ribonucleoproteins in engineering targeted knockin of pseudo attP sites downstream of a ubiquitously expressed COL1A gene in porcine somatic cells and generated live fetuses by somatic cell nuclear transfer (SCNT). By leveraging these knockin pseudo attP sites, we have demonstrated subsequent phiC31 integrase mediated integration of green fluorescent protein (GFP) transgene into the site. This work for the first time created an optimized protocol for CRISPR/Cas mediated knockin in porcine somatic cells, while simultaneously creating a stable platform for future transgene integration and generating transgenic animals.


Subject(s)
Collagen Type I/genetics , Gene Knock-In Techniques/methods , Ribonucleoproteins/metabolism , Swine/genetics , Animals , Animals, Genetically Modified , Attachment Sites, Microbiological , CRISPR-Cas Systems , Cells, Cultured , Fibroblasts/cytology , Gene Targeting , Genetic Engineering/methods , Humans , Integrases/metabolism , Nuclear Transfer Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...