Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
bioRxiv ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38854003

ABSTRACT

Targeted protein degradation has been widely adopted as a new approach to eliminate both established and previously recalcitrant therapeutic targets. Here we report the development of small molecule degraders of the envelope (E) protein of dengue virus. We developed two classes of bivalent E-degraders, linking two previously reported E-binding small molecules, GNF-2 and CVM-2-12-2, to a glutarimide-based recruiter of the CRL4CRBN ligase to effect proteosome-mediated degradation of the E protein. ZXH-2-107 (based on GNF-2) is an E degrader with ABL inhibition while ZXH-8-004 (based on CVM-2-12-2) is a selective and potent E-degrader. These two compounds provide proof-of-concept that difficult-to-drug targets such as a viral envelope protein can be effectively eliminated using a bivalent degrader and provide starting points for the future development of a new class antiviral drugs.

2.
bioRxiv ; 2024 May 05.
Article in English | MEDLINE | ID: mdl-38746375

ABSTRACT

Small molecules promoting protein-protein interactions produce a range of therapeutic outcomes. Molecular glue degraders exemplify this concept due to their compact drug-like structures and ability to engage targets without reliance on existing cognate ligands. While Cereblon molecular glue degraders containing glutarimide scaffolds have been approved for treatment of multiple myeloma and acute myeloid leukemia, the design of new therapeutically relevant monovalent degraders remains challenging. We report here an approach to glutarimide-containing molecular glue synthesis using multicomponent reactions as a central modular core-forming step. Screening the resulting library identified HRZ-01 derivatives that target casein kinase 1 alpha (CK1α) and Wee-like protein kinase (WEE1). Further medicinal chemistry efforts led to identification of selective monovalent WEE1 degraders that provide a potential starting point for the eventual development of a selective chemical degrader probe. The structure of the hit WEE1 degrader complex with CRBN-DDB1 and WEE1 provides a model of the protein-protein interface and a rationale for the observed kinase selectivity. Our findings suggest that modular synthetic routes combined with in-depth structural characterization give access to selective molecular glue degraders and expansion of the CRBN-degradable proteome.

4.
Nature ; 628(8007): 442-449, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538798

ABSTRACT

Whereas oncogenes can potentially be inhibited with small molecules, the loss of tumour suppressors is more common and is problematic because the tumour-suppressor proteins are no longer present to be targeted. Notable examples include SMARCB1-mutant cancers, which are highly lethal malignancies driven by the inactivation of a subunit of SWI/SNF (also known as BAF) chromatin-remodelling complexes. Here, to generate mechanistic insights into the consequences of SMARCB1 mutation and to identify vulnerabilities, we contributed 14 SMARCB1-mutant cell lines to a near genome-wide CRISPR screen as part of the Cancer Dependency Map Project1-3. We report that the little-studied gene DDB1-CUL4-associated factor 5 (DCAF5) is required for the survival of SMARCB1-mutant cancers. We show that DCAF5 has a quality-control function for SWI/SNF complexes and promotes the degradation of incompletely assembled SWI/SNF complexes in the absence of SMARCB1. After depletion of DCAF5, SMARCB1-deficient SWI/SNF complexes reaccumulate, bind to target loci and restore SWI/SNF-mediated gene expression to levels that are sufficient to reverse the cancer state, including in vivo. Consequently, cancer results not from the loss of SMARCB1 function per se, but rather from DCAF5-mediated degradation of SWI/SNF complexes. These data indicate that therapeutic targeting of ubiquitin-mediated quality-control factors may effectively reverse the malignant state of some cancers driven by disruption of tumour suppressor complexes.


Subject(s)
Multiprotein Complexes , Mutation , Neoplasms , SMARCB1 Protein , Animals , Female , Humans , Male , Mice , Cell Line, Tumor , CRISPR-Cas Systems , Gene Editing , Neoplasms/genetics , Neoplasms/metabolism , SMARCB1 Protein/deficiency , SMARCB1 Protein/genetics , SMARCB1 Protein/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Proteolysis , Ubiquitin/metabolism
5.
Nat Chem Biol ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514884

ABSTRACT

Protein ubiquitylation controls diverse processes within eukaryotic cells, including protein degradation, and is often dysregulated in disease. Moreover, small-molecule degraders that redirect ubiquitylation activities toward disease targets are an emerging and promising therapeutic class. Over 600 E3 ubiquitin ligases are expressed in humans, but their substrates remain largely elusive, necessitating the development of new methods for their discovery. Here we report the development of E3-substrate tagging by ubiquitin biotinylation (E-STUB), a ubiquitin-specific proximity labeling method that biotinylates ubiquitylated substrates in proximity to an E3 ligase of interest. E-STUB accurately identifies the direct ubiquitylated targets of protein degraders, including collateral targets and ubiquitylation events that do not lead to substrate degradation. It also detects known substrates of E3 ligase CRBN and VHL with high specificity. With the ability to elucidate proximal ubiquitylation events, E-STUB may facilitate the development of proximity-inducing therapeutics and act as a generalizable method for E3-substrate mapping.

6.
Science ; 383(6688): eadk4422, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38484051

ABSTRACT

Conditional protein degradation tags (degrons) are usually >100 amino acids long or are triggered by small molecules with substantial off-target effects, thwarting their use as specific modulators of endogenous protein levels. We developed a phage-assisted continuous evolution platform for molecular glue complexes (MG-PACE) and evolved a 36-amino acid zinc finger (ZF) degron (SD40) that binds the ubiquitin ligase substrate receptor cereblon in complex with PT-179, an orthogonal thalidomide derivative. Endogenous proteins tagged in-frame with SD40 using prime editing are degraded by otherwise inert PT-179. Cryo-electron microscopy structures of SD40 in complex with ligand-bound cereblon revealed mechanistic insights into the molecular basis of SD40's activity and specificity. Our efforts establish a system for continuous evolution of molecular glue complexes and provide ZF tags that overcome shortcomings associated with existing degrons.


Subject(s)
Degrons , Directed Molecular Evolution , Proteolysis , Ubiquitin-Protein Ligases , Zinc Fingers , Cryoelectron Microscopy , Thalidomide/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitination , Degrons/genetics , Zinc Fingers/genetics , Proteolysis Targeting Chimera , Directed Molecular Evolution/methods , Humans
7.
Sci Signal ; 17(825): eadf2670, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38412255

ABSTRACT

More than 50% of human tumors display hyperactivation of the serine/threonine kinase AKT. Despite evidence of clinical efficacy, the therapeutic window of the current generation of AKT inhibitors could be improved. Here, we report the development of a second-generation AKT degrader, INY-05-040, which outperformed catalytic AKT inhibition with respect to cellular suppression of AKT-dependent phenotypes in breast cancer cell lines. A growth inhibition screen with 288 cancer cell lines confirmed that INY-05-040 had a substantially higher potency than our first-generation AKT degrader (INY-03-041), with both compounds outperforming catalytic AKT inhibition by GDC-0068. Using multiomic profiling and causal network integration in breast cancer cells, we demonstrated that the enhanced efficacy of INY-05-040 was associated with sustained suppression of AKT signaling, which was followed by induction of the stress mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase (JNK). Further integration of growth inhibition assays with publicly available transcriptomic, proteomic, and reverse phase protein array (RPPA) measurements established low basal JNK signaling as a biomarker for breast cancer sensitivity to AKT degradation. Together, our study presents a framework for mapping the network-wide signaling effects of therapeutically relevant compounds and identifies INY-05-040 as a potent pharmacological suppressor of AKT signaling.


Subject(s)
Breast Neoplasms , Mitogen-Activated Protein Kinases , Humans , Female , Proto-Oncogene Proteins c-akt/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Apoptosis , Mitogens , Multiomics , Proteomics , p38 Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases , JNK Mitogen-Activated Protein Kinases
8.
RSC Med Chem ; 15(2): 607-611, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38389883

ABSTRACT

Sulfonyl fluoride EM12-SF was developed previously to covalently engage a histidine residue in the sensor loop of cereblon (CRBN) in the E3 ubiquitin ligase complex CRL4CRBN. Here, we further develop the structure-activity relationships of additional sulfonyl fluoride containing ligands that possess a range of cereblon binding potencies in cells. Isoindoline EM364-SF, which lacks a key hydrogen bond acceptor present in CRBN molecular glues, was identified as a potent binder of CRBN. This led to the development of the reversible molecular glue CPD-2743, that retained cell-based binding affinity for CRBN and degraded the neosubstrate IKZF1 to the same extent as EM12, but unlike isoindolinones, lacked SALL4 degradation activity (a target linked to teratogenicity). CPD-2743 had high permeability and lacked efflux in Caco-2 cells, in contrast to the isoindolinone iberdomide. Our methodology expands the repertoire of sulfonyl exchange chemical biology via the advancement of medicinal chemistry design strategies.

9.
J Biol Chem ; 300(2): 105638, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38199570

ABSTRACT

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. Previous research has shown that in immortalized bone marrow-derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocyte cell lines expressing a synthetic protein blocking the HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context-dependent.


Subject(s)
Inflammasomes , Leukocytes, Mononuclear , Animals , Humans , Mice , Cell Line , Histone Deacetylase 6/genetics , Histone Deacetylase 6/metabolism , Inflammasomes/metabolism , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Protein Transport/physiology
10.
Nat Chem Biol ; 20(1): 93-102, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37679459

ABSTRACT

Molecular glue degraders are an effective therapeutic modality, but their design principles are not well understood. Recently, several unexpectedly diverse compounds were reported to deplete cyclin K by linking CDK12-cyclin K to the DDB1-CUL4-RBX1 E3 ligase. Here, to investigate how chemically dissimilar small molecules trigger cyclin K degradation, we evaluated 91 candidate degraders in structural, biophysical and cellular studies and reveal all compounds acquire glue activity via simultaneous CDK12 binding and engagement of DDB1 interfacial residues, in particular Arg928. While we identify multiple published kinase inhibitors as cryptic degraders, we also show that these glues do not require pronounced inhibitory properties for activity and that the relative degree of CDK12 inhibition versus cyclin K degradation is tuneable. We further demonstrate cyclin K degraders have transcriptional signatures distinct from CDK12 inhibitors, thereby offering unique therapeutic opportunities. The systematic structure-activity relationship analysis presented herein provides a conceptual framework for rational molecular glue design.


Subject(s)
Cyclins , Ubiquitin-Protein Ligases , Cyclins/metabolism , Ubiquitin-Protein Ligases/metabolism , Proteolysis , Structure-Activity Relationship
11.
Blood ; 143(15): 1513-1527, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38096371

ABSTRACT

ABSTRACT: Small molecules that target the menin-KMT2A protein-protein interaction (menin inhibitors) have recently entered clinical trials in lysine methyltransferase 2A (KMT2A or MLL1)-rearranged (KMT2A-r) and nucleophosmin-mutant (NPM1c) acute myeloid leukemia (AML) and are demonstrating encouraging results. However, rationally chosen combination therapy is needed to improve responses and prevent resistance. We have previously identified IKZF1/IKAROS as a target in KMT2A-r AML and shown in preclinical models that IKAROS protein degradation with lenalidomide or iberdomide has modest single-agent activity yet can synergize with menin inhibitors. Recently, the novel IKAROS degrader mezigdomide was developed with greatly enhanced IKAROS protein degradation. In this study, we show that mezigdomide has increased preclinical activity in vitro as a single-agent in KMT2A-r and NPM1c AML cell lines, including sensitivity in cell lines resistant to lenalidomide and iberdomide. Further, we demonstrate that mezigdomide has the greatest capacity to synergize with and induce apoptosis in combination with menin inhibitors, including in MEN1 mutant models. We show that the superior activity of mezigdomide compared with lenalidomide or iberdomide is due to its increased depth, rate, and duration of IKAROS protein degradation. Single-agent mezigdomide was efficacious in 5 patient-derived xenograft models of KMT2A-r and 1 NPM1c AML. The combination of mezigdomide with the menin inhibitor VTP-50469 increased survival and prevented and overcame MEN1 mutations that mediate resistance in patients receiving menin inhibitor monotherapy. These results support prioritization of mezigdomide for early phase clinical trials in KMT2A-r and NPM1c AML, either as a single agent or in combination with menin inhibitors.


Subject(s)
Leukemia, Myeloid, Acute , Morpholines , Myeloid-Lymphoid Leukemia Protein , Phthalimides , Piperidones , Humans , Lenalidomide/therapeutic use , Myeloid-Lymphoid Leukemia Protein/genetics , Myeloid-Lymphoid Leukemia Protein/metabolism , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Transcription Factors/genetics , Mutation
12.
Nat Chem ; 16(2): 218-228, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38110475

ABSTRACT

Proteolysis-targeting chimeras (PROTACs) are molecules that induce proximity between target proteins and E3 ligases triggering target protein degradation. Pomalidomide, a widely used E3 ligase recruiter in PROTACs, can independently degrade other proteins, including zinc-finger (ZF) proteins, with vital roles in health and disease. This off-target degradation hampers the therapeutic applicability of pomalidomide-based PROTACs, requiring development of PROTAC design rules that minimize off-target degradation. Here we developed a high-throughput platform that interrogates off-target degradation and found that reported pomalidomide-based PROTACs induce degradation of several ZF proteins. We generated a library of pomalidomide analogues to understand how functionalizing different positions of the phthalimide ring, hydrogen bonding, and steric and hydrophobic effects impact ZF protein degradation. Modifications of appropriate size on the C5 position reduced off-target ZF degradation, which we validated through target engagement and proteomics studies. By applying these design principles, we developed anaplastic lymphoma kinase oncoprotein-targeting PROTACs with enhanced potency and minimal off-target degradation.


Subject(s)
Proteins , Thalidomide/analogs & derivatives , Ubiquitin-Protein Ligases , Proteolysis , Ubiquitin-Protein Ligases/metabolism , Proteins/metabolism , Thalidomide/pharmacology
13.
ACS Med Chem Lett ; 14(11): 1576-1581, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37974938

ABSTRACT

Site-specific modification of amino acid residues in protein binding pockets using sulfonyl exchange chemistry expands the druggable proteome by enabling the development of covalent modulators that target residues beyond cysteine. Sulfonyl fluoride and triazole electrophiles were incorporated previously into the cereblon (CRBN) molecular glue degrader EM12, to covalently engage His353 within the CRBN sensor loop, but these probes had poor human plasma stability. Attenuation of intrinsic reactivity through the development of sulfonyl pyrazoles, imidazoles, and nucleobases enhanced plasma stability, and several compounds retained efficient labeling of His353. For example, sulfonyl imidazole EM12-SO2Im covalently blocked the CRBN binding site and possessed excellent metabolic stability in human plasma, liver microsomes, and hepatocytes. These results highlight the potential suitability of sulfonyl imidazole and related sulfur(VI)-diazole exchange (SuDEx) warheads for covalent drug development and further exemplify the therapeutic promise of site-specific histidine targeting.

14.
RSC Chem Biol ; 4(11): 906-912, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37920397

ABSTRACT

Many cereblon (CRBN) ligands have been used to develop proteolysis targeting chimeras (PROTACs), but all are reversible binders of the E3 ubiquitin ligase. We recently described the use of sulfonyl exchange chemistry to design binders that covalently engage histidine 353 in CRBN for the first time. Here we show that covalent CRBN ligands can be used to develop efficient PROTAC degraders. We demonstrate that the fluorosulfate PROTAC FS-ARV-825 covalently labels CRBN in vitro, and in cells the BRD4 degrader is insensitive to wash-out and competition by potent reversible CRBN ligands, reflecting enhanced pharmacodynamics. We anticipate that covalent CRBN-based PROTACs will enhance degradation efficiencies, thus expanding the scope of addressable targets using the heterobifunctional degrader modality.

15.
N Z Med J ; 136(1586): 51-62, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38033240

ABSTRACT

AIMS: Postgraduate and medical students are at risk of psychological distress and burnout, which can cause significant functional and occupational impairment. We aimed to report subjective wellbeing, psychological distress and burnout in postgraduate and medical students in Otautahi Christchurch, Aotearoa (New Zealand), and identify any associations between participant and course information and outcome measures including exposure to major earthquakes in 2010/2011 and the 2019 terrorist attack. METHODS: A self-report online survey was completed by 140 students between November 2019 and March 2020. Life satisfaction, psychological distress and burnout were primary outcomes. Data were analysed using univariate and multivariable analysis. RESULTS: High levels of psychological distress were present in both student groups. Burnout was reported by 78% of respondents. There were no significant associations found between exposure to the Christchurch earthquakes or terrorist attack with primary outcomes. Personality factors, resilience and perceived support and success were weakly associated with wellbeing, distress and burnout. CONCLUSIONS: Postgraduates and medical students reported high levels of psychological distress and burnout. The earthquakes and terrorist attack do not appear to be associated with negative effects in these cohorts. Personality and resilience characteristics may assist in predicting students at risk of morbidity and evaluating potentially relevant interventions.


Subject(s)
Burnout, Professional , Earthquakes , Students, Medical , Humans , Students, Medical/psychology , New Zealand/epidemiology , Burnout, Professional/epidemiology , Burnout, Professional/psychology , Surveys and Questionnaires , Stress, Psychological/epidemiology
16.
Angew Chem Int Ed Engl ; 62(43): e202308292, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37658265

ABSTRACT

Chemical probes are essential tools for understanding biological systems and for credentialing potential biomedical targets. Programmed cell death 2 (PDCD2) is a member of the B-cell lymphoma 2 (Bcl-2) family of proteins, which are critical regulators of apoptosis. Here we report the discovery and characterization of 10 e, a first-in-class small molecule degrader of PDCD2. We discovered this PDCD2 degrader by serendipity using a chemical proteomics approach, in contrast to the conventional approach for making bivalent degraders starting from a known binding ligand targeting the protein of interest. Using 10 e as a pharmacological probe, we demonstrate that PDCD2 functions as a critical regulator of cell growth by modulating the progression of the cell cycle in T lymphoblasts. Our work provides a useful pharmacological probe for investigating PDCD2 function and highlights the use of chemical proteomics to discover selective small molecule degraders of unanticipated targets.


Subject(s)
Apoptosis Regulatory Proteins , Lymphoma, B-Cell , Humans , Apoptosis Regulatory Proteins/metabolism , Proteomics , Apoptosis , Cell Proliferation
17.
Sci Transl Med ; 15(714): eadi7244, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37729434

ABSTRACT

Gene fusions involving tumor protein p63 gene (TP63) occur in multiple T and B cell lymphomas and portend a dismal prognosis for patients. The function and mechanisms of TP63 fusions remain unclear, and there is no target therapy for patients with lymphoma harboring TP63 fusions. Here, we show that TP63 fusions act as bona fide oncogenes and are essential for fusion-positive lymphomas. Transgenic mice expressing TBL1XR1::TP63, the most common TP63 fusion, develop diverse lymphomas that recapitulate multiple human T and B cell lymphomas. Here, we identify that TP63 fusions coordinate the recruitment of two epigenetic modifying complexes, the nuclear receptor corepressor (NCoR)-histone deacetylase 3 (HDAC3) by the N-terminal TP63 fusion partner and the lysine methyltransferase 2D (KMT2D) by the C-terminal TP63 component, which are both required for fusion-dependent survival. TBL1XR1::TP63 localization at enhancers drives a unique cell state that involves up-regulation of MYC and the polycomb repressor complex 2 (PRC2) components EED and EZH2. Inhibiting EZH2 with the therapeutic agent valemetostat is highly effective at treating transgenic lymphoma murine models, xenografts, and patient-derived xenografts harboring TP63 fusions. One patient with TP63-rearranged lymphoma showed a rapid response to valemetostat treatment. In summary, TP63 fusions link partner components that, together, coordinate multiple epigenetic complexes, resulting in therapeutic vulnerability to EZH2 inhibition.


Subject(s)
Cell Nucleus , Oncogenes , Humans , Animals , Mice , Transcriptional Activation , Co-Repressor Proteins , Disease Models, Animal , Enhancer of Zeste Homolog 2 Protein/genetics , Transcription Factors , Tumor Suppressor Proteins
18.
J Am Chem Soc ; 145(40): 21937-21944, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37767920

ABSTRACT

Targeted protein degradation relies on small molecules that induce new protein-protein interactions between targets and the cellular protein degradation machinery. Most of these small molecules feature specific ligands for ubiquitin ligases. Recently, the attachment of cysteine-reactive chemical groups to pre-existing small molecule inhibitors has been shown to drive specific target degradation. We demonstrate here that different cysteine-reactive groups can specify target degradation via distinct ubiquitin ligases. By focusing on the bromodomain ligand JQ1, we identify cysteine-reactive functional groups that drive BRD4 degradation by either DCAF16 or DCAF11. Unlike proteolysis-targeting chimeric molecules (PROTACs), the new compounds use a single small molecule ligand with a well-positioned cysteine-reactive group to induce protein degradation. The finding that nearly identical compounds can engage multiple ubiquitination pathways suggests that targeting cellular pathways that search for and eliminate chemically reactive proteins is a feasible avenue for converting existing small molecule drugs into protein degrader molecules.

19.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645730

ABSTRACT

The inflammasome is a large multiprotein complex that assembles in the cell cytoplasm in response to stress or pathogenic infection. Its primary function is to defend the cell and promote the secretion of pro-inflammatory cytokines, including IL-1ß and IL-18. It was shown that in immortalized bone marrow derived macrophages (iBMDMs) inflammasome assembly is dependent on the deacetylase HDAC6 and the aggresome processing pathway (APP), a cellular pathway involved in the disposal of misfolded proteins. Here we used primary BMDMs from mice in which HDAC6 is ablated or impaired and found that inflammasome activation was largely normal. We also used human peripheral blood mononuclear cells and monocytes cell lines expressing a synthetic protein blocking HDAC6-ubiquitin interaction and impairing the APP and found that inflammasome activation was moderately affected. Finally, we used a novel HDAC6 degrader and showed that inflammasome activation was partially impaired in human macrophage cell lines with depleted HDAC6. Our results therefore show that HDAC6 importance in inflammasome activation is context dependent.

20.
bioRxiv ; 2023 May 30.
Article in English | MEDLINE | ID: mdl-37398461

ABSTRACT

Selective breakdown of proteins and aggregates is crucial for maintaining normal cellular activities and is involved in the pathogenesis of diverse diseases. How the cell recognizes and tags these targets in different structural states for degradation by the proteasome and autophagy pathways has not been well understood. Here, we discovered that a HECT-family ubiquitin ligase HUWE1 is broadly required for the efficient degradation of soluble factors and for the clearance of protein aggregates/condensates. Underlying this capacity of HUWE1 is a novel Ubiquitin-Directed ubiquitin Ligase (UDL) activity which recognizes both soluble substrates and aggregates that carry a high density of ubiquitin chains and rapidly expand the ubiquitin modifications on these targets. Ubiquitin signal amplification by HUWE1 recruits the ubiquitin-dependent segregase p97/VCP to process these targets for subsequent degradation or clearance. HUWE1 controls the cytotoxicity of protein aggregates, mediates Targeted Protein Degradation and regulates cell-cycle transitions with its UDL activity.

SELECTION OF CITATIONS
SEARCH DETAIL
...