Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Physiol ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39316734

ABSTRACT

During exercise or stress, the sympathetic system stimulates cardiac contractility via ß-adrenergic receptor (ß-AR) activation, resulting in phosphorylation of the cardiac ryanodine receptor (RyR2). Three RyR2 phosphorylation sites have taken prominence in excitation-contraction coupling: S2808 and S2030 are described as protein kinase A specific and S2814 as a Ca2+/calmodulin kinase type-2-specific site. To examine the contribution of these phosphosites to Ca2+ signalling, we generated double knock-in (DKI) mice in which Ser2808 and Ser2814 phosphorylation sites have both been replaced by alanine (RyR2-S2808A/S2814A). These mice did not exhibit an overt phenotype. Heart morphology and haemodynamic parameters were not altered. However, they had a higher susceptibility to arrhythmias. We performed confocal Ca2+ imaging and electrophysiology experiments. Isoprenaline was used to stimulate ß-ARs. Measurements of Ca2+ waves and latencies in myocytes revealed an increased propensity for spontaneous Ca2+ releases in DKI myocytes, both in control conditions and during ß-AR stimulation. In DKI cells, waves were initiated from a lower threshold concentration of Ca2+ inside the sarcoplasmic reticulum, suggesting higher Ca2+ sensitivity of the RyRs. The refractoriness of Ca2+ spark triggering depends on the Ca2+ sensitivity of the RyR2. We found that RyR2-S2808A/S2814A channels were more Ca2+ sensitive in control conditions. Isoprenaline further shortened RyR refractoriness in DKI cardiomyocytes. Together, our results suggest that ablation of both the RyR2-Ser2808 and RyR2-S2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. Given that the DKI cells present a full response to isoprenaline, the data suggest that phosphorylation of Ser2030 might be sufficient for ß-AR-mediated sensitization of RyRs. KEY POINTS: Phosphorylation of cardiac sarcoplasmic reticulum Ca2+-release channels (ryanodine receptors, RyRs) is involved in the regulation of cardiac function. Ablation of both the RyR2-Ser2808 and RyR2-Ser2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. The intra-sarcoplasmic reticulum Ca2+ threshold for spontaneous Ca2+ wave generation is lower in RyR2-double-knock-in cells. The RyR2 from double-knock-in cells exhibits increased Ca2+ sensitivity. Phosphorylation of Ser2808 and Ser2814 might be important for basal activity of the channel. Phosphorylation of Ser2030 might be sufficient for a ß-adrenergic response.

2.
bioRxiv ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39026734

ABSTRACT

Background: Ryanodine receptor 2 (RyR2) is one of the first substrates undergoing phosphorylation upon catecholaminergic stimulation. Yet, the role of RyR2 phosphorylation in the adrenergic response remains debated. To date, three residues in RyR2 are known to undergo phosphorylation upon adrenergic stimulation. We generated a model of RyR2 phospho-ablation of all three canonical phospho-sites (RyR2-S2031A/S2808A/S2814A, triple phospho-mutant, TPM) to elucidate the role of phosphorylation at these residues in the adrenergic response. Methods: Cardiac structure and function, cellular Ca 2+ dynamics and electrophysiology, and RyR2 channel activity both under basal conditions and under isoproterenol (Iso) stimulation were systematically evaluated. We used echocardiography and electrocardiography in anesthetized mice, single-cell Ca 2+ imaging and whole-cell patch clamp in isolated adult cardiomyocytes, and biochemical assays. Results: Iso stimulation produced normal chronotropic and inotropic responses in TPM mice as well as an increase in the global Ca 2+ transients in isolated cardiomyocytes. Functional studies revealed fewer Ca 2+ sparks in permeabilized TPM myocytes, and reduced RyR2-mediated Ca 2+ leak in intact myocytes under Iso stimulation, suggesting that the canonical sites may regulate RyR2-mediated Ca 2+ leak. TPM mice also displayed increased propensity for arrhythmia. TPM myocytes were prone to develop early afterdepolarizations (EADs), which were abolished by chelating intracellular Ca 2+ with EGTA, indicating that EADs require SR Ca 2+ release. EADs were also blocked by a low concentration of tetrodotoxin, further suggesting reactivation of the sodium current ( I Na ) as the underlying cause. Conclusion: Phosphorylation of the three canonical residues on RyR2 may not be essential for the global adrenergic responses. However, these sites play a vital role in maintaining electrical stability during catecholamine stimulation by fine-tuning RyR2-mediated Ca 2+ leak. These findings underscore the importance of RyR2 phosphorylation and a finite diastolic Ca 2+ leak in maintaining electrical stability during catecholamine stimulation.

3.
J Mol Cell Cardiol ; 167: 118-128, 2022 06.
Article in English | MEDLINE | ID: mdl-35413295

ABSTRACT

Ryanodine receptor 2 (RyR2) is an ion channel in the heart responsible for releasing into the cytosol most of the Ca2+ required for contraction. Proper regulation of RyR2 is critical, as highlighted by the association between channel dysfunction and cardiac arrhythmia. Lower RyR2 expression is also observed in some forms of heart disease; however, there is limited information on the impact of this change on excitation-contraction (e-c) coupling, Ca2+-dependent arrhythmias, and cardiac performance. We used a constitutive knock-out of RyR2 in rabbits (RyR2-KO) to assess the extent to which a stable decrease in RyR2 expression modulates Ca2+ handling in the heart. We found that homozygous knock-out of RyR2 in rabbits is embryonic lethal. Remarkably, heterozygotes (KO+/-) show ~50% loss of RyR2 protein without developing an overt phenotype at the intact animal and whole heart levels. Instead, we found that KO+/- myocytes show (1) remodeling of RyR2 clusters, favoring smaller groups in which channels are more densely arranged; (2) lower Ca2+ spark frequency and amplitude; (3) slower rate of Ca2+ release and mild but significant desynchronization of the Ca2+ transient; and (4) a significant decrease in the basal phosphorylation of S2031, likely due to increased association between RyR2 and PP2A. Our data show that RyR2 deficiency, although remarkable at the molecular and subcellular level, has only a modest impact on global Ca2+ release and is fully compensated at the whole-heart level. This highlights the redundancy of RyR2 protein expression and the plasticity of the e-c coupling apparatus.


Subject(s)
Adrenergic Agents , Ryanodine Receptor Calcium Release Channel , Animals , Arrhythmias, Cardiac/metabolism , Calcium/metabolism , Calcium Signaling , Excitation Contraction Coupling , Myocytes, Cardiac/metabolism , Rabbits , Ryanodine Receptor Calcium Release Channel/genetics , Ryanodine Receptor Calcium Release Channel/metabolism , Sarcoplasmic Reticulum/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL