Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 200
Filter
1.
Hepat Med ; 16: 65-77, 2024.
Article in English | MEDLINE | ID: mdl-39247515

ABSTRACT

Purpose: Both hepatic iron accumulation and hemolysis have been identified as independent prognostic factor in alcohol-related liver disease (ALD); however, the mechanisms still remain poorly understood. We here demonstrate that hepatocytes are able to directly ingest aged and ethanol-primed red blood cells (RBCs), a process termed efferocytosis. Methods: Efferocytosis of RBCs was directly studied in vitro and observed by live microscopy for real-time visualization. RBCs pretreated with either CuSO4 or ethanol following co-incubation with Huh7 cells and murine primary hepatocytes. Heme oxygenase-1 (HO-1) and other targets were measured by q-PCR. Results: As shown by live microscopy, oxidized RBCs, but not intact RBCs, are rapidly ingested by both Huh7 cells and murine primary hepatocytes within 10 minutes. In some cases, more than 10 RBCs were seen within hepatocytes, surrounding the nucleus. RBC efferocytosis also rapidly induces HO1, its upstream regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and ferritin, indicating efficient heme degradation. Preliminary data further suggest that hepatocyte efferocytosis of oxidized RBCs is, at least in part, mediated by scavenging receptors such as ASGPR1. Of note, pretreatment of RBCs with ethanol but also heme and bilirubin also initiated efferocytosis. In a cohort of heavy human drinkers, a significant correlation of hepatic ASGPR1 with the heme degradation pathway was observed. Conclusion: We here demonstrate that hepatocytes can directly ingest and degrade oxidized RBCs through efferocytosis, a process that can be also triggered by ethanol, heme and bilirubin. Our findings are highly suggestive for a novel mechanism of hepatic iron overload in ALD patients.

2.
Biochem Biophys Res Commun ; 732: 150409, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39033550

ABSTRACT

INTRODUCTION: WNT1-inducible signalling pathway protein 1 (WISP1) promotes progression of several tumor entities often correlating with worse prognosis. Here its expression regulation and role in the progression of chronic liver diseases (CLD) was investigated. METHODS: WISP1 expression was analyzed in human HCC datasets, in biopsies and serum samples and an HCC patient tissue microarray (TMA) including correlation to clinicopathological parameters. Spatial distribution of WISP1 expression was determined using RNAscope analysis. Regulation of WISP1 expression was investigated in cytokine-stimulated primary mouse hepatocytes (PMH) by array analysis and qRT-PCR. Outcome of WISP1 stimulation was analyzed by IncuCyte S3-live cell imaging, qRT-PCR, and immunoblotting in murine AML12 cells. RESULTS: In a TMA, high WISP1 expression was positively correlated with early HCC stages and male sex. Highest WISP1 expression levels were detected in patients with cirrhosis as compared to healthy individuals, patients with early fibrosis, and non-cirrhotic HCC in liver biopsies, expression datasets and serum samples. WISP1 transcripts were predominantly detected in hepatocytes of cirrhotic rather than tumorous liver tissue. High WISP1 expression was associated with better survival. In PMH, AML12 and HepaRG, WISP1 was identified as a specific TGF-ß1 target gene. Accordingly, expression levels of both cytokines positively correlated in human HCC patient samples. WISP1-stimulation induced the expression of Bcl-xL, PCNA and p21 in AML12 cells. CONCLUSIONS: WISP1 expression is induced by TGF-ß1 in hepatocytes and is associated with cirrhotic liver disease. We propose a crucial role of WISP1 in balancing pro- and anti-tumorigenic effects during premalignant stages of CLD.


Subject(s)
CCN Intercellular Signaling Proteins , Carcinogenesis , Gene Expression Regulation, Neoplastic , Liver Cirrhosis , Liver Neoplasms , Tumor Microenvironment , CCN Intercellular Signaling Proteins/genetics , CCN Intercellular Signaling Proteins/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Gene Expression Profiling , Survival Analysis , Humans , Male , Female , Animals , Mice , Hepatocytes/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Apoptosis/genetics , Cell Proliferation/genetics , Cell Cycle Checkpoints/genetics , Tumor Microenvironment/genetics , Carcinogenesis/genetics
3.
Hepatol Commun ; 8(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39023343

ABSTRACT

BACKGROUND: When massive necrosis occurs in acute liver failure (ALF), rapid expansion of HSCs called liver progenitor cells (LPCs) in a process called ductular reaction is required for survival. The underlying mechanisms governing this process are not entirely known to date. In ALF, high levels of retinoic acid (RA), a molecule known for its pleiotropic roles in embryonic development, are secreted by activated HSCs. We hypothesized that RA plays a key role in ductular reaction during ALF. METHODS: RNAseq was performed to identify molecular signaling pathways affected by all-trans retinoid acid (atRA) treatment in HepaRG LPCs. Functional assays were performed in HepaRG cells treated with atRA or cocultured with LX-2 cells and in the liver tissue of patients suffering from ALF. RESULTS: Under ALF conditions, activated HSCs secreted RA, inducing RARα nuclear translocation in LPCs. RNAseq data and investigations in HepaRG cells revealed that atRA treatment activated the WNT-ß-Catenin pathway, enhanced stemness genes (SOX9, AFP, and others), increased energy storage, and elevated the expression of ATP-binding cassette transporters in a RARα nuclear translocation-dependent manner. Further, atRA treatment-induced pathways were confirmed in a coculture system of HepaRG with LX-2 cells. Patients suffering from ALF who displayed RARα nuclear translocation in the LPCs had significantly better MELD scores than those without. CONCLUSIONS: During ALF, RA secreted by activated HSCs promotes LPC activation, a prerequisite for subsequent LPC-mediated liver regeneration.


Subject(s)
Liver Failure, Acute , Stem Cells , Tretinoin , Humans , Tretinoin/pharmacology , Stem Cells/drug effects , Wnt Signaling Pathway/drug effects , Liver/drug effects , Retinoic Acid Receptor alpha/genetics , Retinoic Acid Receptor alpha/metabolism , Coculture Techniques , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism
4.
EBioMedicine ; 105: 105178, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38889481

ABSTRACT

BACKGROUND: The accuracy of blood-based early tumour recognition is compromised by signal production at non-tumoral sites, low amount of signal produced by small tumours, and variable tumour production. Here we examined whether tumour-specific enhancement of vascular permeability by the particular tumour homing peptide, iRGD, which carries dual function of binding to integrin receptors overexpressed in the tumour vasculature and is known to promote extravasation via neuropilin-1 receptor upon site-specific cleavage, might be useful to improve blood-based tumour detection by inducing a yet unrecognised vice versa tumour-to-blood transport. METHODS: To detect an iRGD-induced tumour-to-blood transport, we examined the effect of intravenously injected iRGD on blood levels of α-fetoprotein (AFP) and autotaxin in several mouse models of hepatocellular carcinoma (HCC) or in mice with chronic liver injury without HCC, and on prostate-specific antigen (PSA) levels in mice with prostate cancer. FINDINGS: Intravenously injected iRGD rapidly and robustly elevated the blood levels of AFP in several mouse models of HCC, but not in mice with chronic liver injury. The effect was primarily seen in mice with small tumours and normal basal blood AFP levels, was attenuated by an anti-neuropilin-1 antibody, and depended on the concentration gradient between tumour and blood. iRGD treatment was also able to increase blood levels of autotaxin in HCC mice, and of PSA in mice with prostate cancer. INTERPRETATION: We conclude that iRGD induces a tumour-to-blood transport in a tumour-specific fashion that has potential of improving diagnosis of early stage cancer. FUNDING: Deutsche Krebshilfe, DKTK, LOEWE-Frankfurt Cancer Institute.


Subject(s)
Biomarkers, Tumor , Carcinoma, Hepatocellular , Disease Models, Animal , Liver Neoplasms , Phosphoric Diester Hydrolases , Animals , Mice , Biomarkers, Tumor/blood , Phosphoric Diester Hydrolases/blood , Phosphoric Diester Hydrolases/metabolism , Carcinoma, Hepatocellular/blood , Carcinoma, Hepatocellular/diagnosis , Liver Neoplasms/blood , Liver Neoplasms/diagnosis , Liver Neoplasms/metabolism , alpha-Fetoproteins/metabolism , Male , Humans , Cell Line, Tumor , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/blood , Prostatic Neoplasms/pathology , Prostatic Neoplasms/metabolism , Oligopeptides/administration & dosage
5.
Redox Biol ; 71: 103107, 2024 05.
Article in English | MEDLINE | ID: mdl-38479224

ABSTRACT

Fibroblast growth factor 23 (FGF23) is a member of endocrine FGF family, along with FGF15/19 and FGF21. Recent reports showed that under pathological conditions, liver produces FGF23, although the role of hepatic FGF23 remains nebulous. Here, we investigated the role of hepatic FGF23 in alcoholic liver disease (ALD) and delineated the underlying molecular mechanism. FGF23 expression was compared in livers from alcoholic hepatitis patients and healthy controls. The role of FGF23 was examined in hepatocyte-specific knock-out (LKO) mice of cannabinoid receptor type 1 (CB1R), estrogen related receptor γ (ERRγ), or FGF23. Animals were fed with an alcohol-containing liquid diet alone or in combination with ERRγ inverse agonist. FGF23 is mainly expressed in hepatocytes in the human liver, and it is upregulated in ALD patients. In mice, chronic alcohol feeding leads to liver damage and induced FGF23 in liver, but not in other organs. FGF23 is transcriptionally regulated by ERRγ in response to alcohol-mediated activation of the CB1R. Alcohol induced upregulation of hepatic FGF23 and plasma FGF23 levels is lost in ERRγ-LKO mice, and an inverse agonist mediated inhibition of ERRγ transactivation significantly improved alcoholic liver damage. Moreover, hepatic CYP2E1 induction in response to alcohol is FGF23 dependent. In line, FGF23-LKO mice display decreased hepatic CYP2E1 expression and improved ALD through reduced hepatocyte apoptosis and oxidative stress. We recognized CBIR-ERRγ-FGF23 axis in facilitating ALD pathology through hepatic CYP2E1 induction. Thus, we propose FGF23 as a potential therapeutic target to treat ALD.


Subject(s)
Cytochrome P-450 CYP2E1 , Liver Diseases, Alcoholic , Animals , Humans , Mice , Cytochrome P-450 CYP2E1/genetics , Cytochrome P-450 CYP2E1/metabolism , Drug Inverse Agonism , Ethanol/pharmacology , Hepatocytes/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Oxidative Stress
6.
Cell Mol Life Sci ; 81(1): 115, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38436764

ABSTRACT

INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.


Subject(s)
Cell Communication , Liver , YAP-Signaling Proteins , Animals , Mice , Cell Communication/genetics , Endothelial Cells , Hepatocytes , Ligands , Liver/metabolism , YAP-Signaling Proteins/genetics , YAP-Signaling Proteins/metabolism
7.
Int J Exp Pathol ; 105(2): 64-74, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38328944

ABSTRACT

Transforming growth factor (TGF)-ß and toll-like receptors (TLRs) have been shown to independently modulate the proliferation of hepatocellular carcinoma (HCC). Since a direct cross-talk between these two signalling pathways in HCC has not been clearly described before, we aimed here to explore the possibility of such interaction. A human HCC tissue array (n = 20 vs. four control samples), human HCC samples (n = 10) and steatohepatitis-driven murine HCC samples (control, NASH and HCC; n = 6/group) were immunostained for TGFßR1, pSMAD2, TRAF6, IRAK1 and PCNA. The results were confirmed by immunoblotting. Effects of constant activation of the SMAD pathway by constitutive expression of ALK5 or knockdown of mediators of TLR signalling, IRAK1 and MyD88, on HCC proliferation, were investigated in the HCC cell line (HUH-7) after treatment with TGFß1 cytokine or TGFßR1 kinase inhibitor (LY2157299) using PCNA and MTS assay. TGFßR1 expression is decreased in human and murine HCC and associated with downregulated pSMAD2, but increased IRAK1, TRAF6 and PCNA staining. TGFßR1 kinase inhibition abolished the cytostatic effects of TGFß1 and led to the induction of IRAK1, pIRAK1 and elevated mRNA levels of TLR-9. Overexpression of ALK5 and knockdown of MyD88 or IRAK1 augmented the cytostatic effects of TGFß1 on HUH-7. In another epithelial HCC cell line, that is, HepG2, TGFßR1 kinase inhibitor similarly elevated cellular proliferation. There is a balance between the canonical SMAD-driven tumour-suppressing arm and the non-canonical tumour-promoting arm of TGFß signalling. Disruption of this balance, by inhibition of the canonical pathway, induces HCC proliferation through TLR signalling.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Cytostatic Agents , Liver Neoplasms , Animals , Humans , Mice , Carcinoma, Hepatocellular/pathology , Cell Proliferation , Liver Neoplasms/pathology , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/metabolism , Proliferating Cell Nuclear Antigen/metabolism , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptors/metabolism , Transforming Growth Factor beta/metabolism
8.
iScience ; 27(2): 108077, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38371522

ABSTRACT

This communication presents a mathematical mechanism-based model of the regenerating liver after drug-induced pericentral lobule damage resolving tissue microarchitecture. The consequence of alternative hypotheses about the interplay of different cell types on regeneration was simulated. Regeneration dynamics has been quantified by the size of the damage-induced dead cell area, the hepatocyte density and the spatial-temporal profile of the different cell types. We use deviations of observed trajectories from the simulated system to identify branching points, at which the systems behavior cannot be explained by the underlying set of hypotheses anymore. Our procedure reflects a successful strategy for generating a fully digital liver twin that, among others, permits to test perturbations from the molecular up to the tissue scale. The model simulations are complementing current knowledge on liver regeneration by identifying gaps in mechanistic relationships and guiding the system toward the most informative (lacking) parameters that can be experimentally addressed.

9.
Commun Biol ; 7(1): 8, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38168942

ABSTRACT

Cholesterol mediates membrane compartmentalization, affecting signaling via differential distribution of receptors and signaling mediators. While excessive cholesterol and aberrant transforming growth factor-ß (TGF-ß) signaling characterize multiple liver diseases, their linkage to canonical vs. non-canonical TGF-ß signaling remained unclear. Here, we subjected murine hepatocytes to cholesterol depletion (CD) or enrichment (CE), followed by biophysical studies on TGF-ß receptor heterocomplex formation, and output to Smad2/3 vs. Akt pathways. Prior to ligand addition, raft-dependent preformed heteromeric receptor complexes were observed. Smad2/3 phosphorylation persisted following CD or CE. CD enhanced phospho-Akt (pAkt) formation by TGF-ß or epidermal growth factor (EGF) at 5 min, while reducing it at later time points. Conversely, pAkt formation by TGF-ß or EGF was inhibited by CE, suggesting a direct effect on the Akt pathway. The modulation of the balance between TGF-ß signaling to Smad2/3 vs. pAkt (by TGF-ß or EGF) has potential implications for hepatic diseases and malignancies.


Subject(s)
Liver Diseases , Proto-Oncogene Proteins c-akt , Mice , Animals , Proto-Oncogene Proteins c-akt/metabolism , Epidermal Growth Factor , Hepatocytes/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta/metabolism , Liver Diseases/metabolism , Cholesterol/metabolism
10.
Am J Pathol ; 194(1): 52-70, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37820926

ABSTRACT

Loss of hepatocyte nuclear factor 4α (HNF4α) expression is frequently observed in end-stage liver disease and associated with loss of vital liver functions, thus increasing mortality. Loss of HNF4α expression is mediated by inflammatory cytokines, such as transforming growth factor (TGF)-ß. However, details of how HNF4α is suppressed are largely unknown to date. Herein, TGF-ß did not directly inhibit HNF4α but contributed to its transcriptional regulation by SMAD2/3 recruiting acetyltransferase CREB-binding protein/p300 to the HNF4α promoter. The recruitment of CREB-binding protein/p300 is indispensable for CCAAT/enhancer-binding protein α (C/EBPα) binding, another essential requirement for constitutive HNF4α expression in hepatocytes. Consistent with the in vitro observation, 67 of 98 patients with hepatic HNF4α expressed both phospho-SMAD2 and C/EBPα, whereas 22 patients without HNF4α expression lacked either phospho-SMAD2 or C/EBPα. In contrast to the observed induction of HNF4α, SMAD2/3 inhibited C/EBPα transcription. Long-term TGF-ß incubation resulted in C/EBPα depletion, which abrogated HNF4α expression. Intriguingly, SMAD2/3 inhibitory binding to the C/EBPα promoter was abolished by insulin. Two-thirds of patients without C/EBPα lacked membrane glucose transporter type 2 expression in hepatocytes, indicating insulin resistance. Taken together, these data indicate that hepatic insulin sensitivity is essential for hepatic HNF4α expression in the condition of inflammation.


Subject(s)
CREB-Binding Protein , Insulin , Humans , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CREB-Binding Protein/metabolism , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Hepatocytes/metabolism , Liver/metabolism , Transforming Growth Factor beta/pharmacology , Transforming Growth Factor beta/metabolism
11.
Cell Mol Gastroenterol Hepatol ; 17(4): 567-587, 2024.
Article in English | MEDLINE | ID: mdl-38154598

ABSTRACT

BACKGROUND & AIMS: Transforming growth factor-ß1 (TGF-ß1) plays important roles in chronic liver diseases, including metabolic dysfunction-associated steatotic liver disease (MASLD). MASLD involves various biological processes including dysfunctional cholesterol metabolism and contributes to progression to metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma. However, the reciprocal regulation of TGF-ß1 signaling and cholesterol metabolism in MASLD is yet unknown. METHODS: Changes in transcription of genes associated with cholesterol metabolism were assessed by RNA sequencing of murine hepatocyte cell line (alpha mouse liver 12/AML12) and mouse primary hepatocytes treated with TGF-ß1. Functional assays were performed on AML12 cells (untreated, TGF-ß1 treated, or subjected to cholesterol enrichment [CE] or cholesterol depletion [CD]), and on mice injected with adenovirus-associated virus 8-control/TGF-ß1. RESULTS: TGF-ß1 inhibited messenger RNA expression of several cholesterol metabolism regulatory genes, including rate-limiting enzymes of cholesterol biosynthesis in AML12 cells, mouse primary hepatocytes, and adenovirus-associated virus-TGF-ß1-treated mice. Total cholesterol levels and lipid droplet accumulation in AML12 cells and liver tissue also were reduced upon TGF-ß1 treatment. Smad2/3 phosphorylation after 2 hours of TGF-ß1 treatment persisted after CE or CD and was mildly increased after CD, whereas TGF-ß1-mediated AKT phosphorylation (30 min) was inhibited by CE. Furthermore, CE protected AML12 cells from several effects mediated by 72 hours of incubation with TGF-ß1, including epithelial-mesenchymal transition, actin polymerization, and apoptosis. CD mimicked the outcome of long-term TGF-ß1 administration, an effect that was blocked by an inhibitor of the type I TGF-ß receptor. In addition, the supernatant of CE- or CD-treated AML12 cells inhibited or promoted, respectively, the activation of LX-2 hepatic stellate cells. CONCLUSIONS: TGF-ß1 inhibits cholesterol metabolism whereas cholesterol attenuates TGF-ß1 downstream effects in hepatocytes.


Subject(s)
Fatty Liver , Transforming Growth Factor beta1 , Mice , Animals , Transforming Growth Factor beta1/metabolism , Hepatocytes/metabolism , Hepatic Stellate Cells/pathology , Cell Line , Fatty Liver/metabolism
12.
Hepatol Commun ; 7(8)2023 08 01.
Article in English | MEDLINE | ID: mdl-37486964

ABSTRACT

BACKGROUND: Macrophages play an important role in maintaining liver homeostasis and regeneration. However, it is not clear to what extent the different macrophage populations of the liver differ in terms of their activation state and which other liver cell populations may play a role in regulating the same. METHODS: Reverse transcription PCR, flow cytometry, transcriptome, proteome, secretome, single cell analysis, and immunohistochemical methods were used to study changes in gene expression as well as the activation state of macrophages in vitro and in vivo under homeostatic conditions and after partial hepatectomy. RESULTS: We show that F4/80+/CD11bhi/CD14hi macrophages of the liver are recruited in a C-C motif chemokine receptor (CCR2)-dependent manner and exhibit an activation state that differs substantially from that of the other liver macrophage populations, which can be distinguished on the basis of CD11b and CD14 expressions. Thereby, primary hepatocytes are capable of creating an environment in vitro that elicits the same specific activation state in bone marrow-derived macrophages as observed in F4/80+/CD11bhi/CD14hi liver macrophages in vivo. Subsequent analyses, including studies in mice with a myeloid cell-specific deletion of the TGF-ß type II receptor, suggest that the availability of activated TGF-ß and its downregulation by a hepatocyte-conditioned milieu are critical. Reduction of TGF-ßRII-mediated signal transduction in myeloid cells leads to upregulation of IL-6, IL-10, and SIGLEC1 expression, a hallmark of the activation state of F4/80+/CD11bhi/CD14hi macrophages, and enhances liver regeneration. CONCLUSIONS: The availability of activated TGF-ß determines the activation state of specific macrophage populations in the liver, and the observed rapid transient activation of TGF-ß may represent an important regulatory mechanism in the early phase of liver regeneration in this context.


Subject(s)
Liver Regeneration , Transforming Growth Factor beta , Animals , Mice , Gene Expression , Hepatocytes/metabolism , Macrophages/metabolism , Transforming Growth Factor beta/metabolism
14.
Cell Death Dis ; 14(7): 414, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37438332

ABSTRACT

The human liver has a remarkable capacity to regenerate and thus compensate over decades for fibrosis caused by toxic chemicals, drugs, alcohol, or malnutrition. To date, no protective mechanisms have been identified that help the liver tolerate these repeated injuries. In this study, we revealed dysregulation of lipid metabolism and mild inflammation as protective mechanisms by studying longitudinal multi-omic measurements of liver fibrosis induced by repeated CCl4 injections in mice (n = 45). Based on comprehensive proteomics, transcriptomics, blood- and tissue-level profiling, we uncovered three phases of early disease development-initiation, progression, and tolerance. Using novel multi-omic network analysis, we identified multi-level mechanisms that are significantly dysregulated in the injury-tolerant response. Public data analysis shows that these profiles are altered in human liver diseases, including fibrosis and early cirrhosis stages. Our findings mark the beginning of the tolerance phase as the critical switching point in liver response to repetitive toxic doses. After fostering extracellular matrix accumulation as an acute response, we observe a deposition of tiny lipid droplets in hepatocytes only in the Tolerant phase. Our comprehensive study shows that lipid metabolism and mild inflammation may serve as biomarkers and are putative functional requirements to resist further disease progression.


Subject(s)
Fatty Liver , Reinjuries , Humans , Animals , Mice , Inflammation , Liver Cirrhosis/chemically induced
15.
J Hepatol ; 78(4): 805-819, 2023 04.
Article in English | MEDLINE | ID: mdl-36669703

ABSTRACT

BACKGROUND & AIMS: Capsaicin receptor, also known as transient receptor potential vanilloid 1 (TRPV1), is involved in pain physiology and neurogenic inflammation. Herein, we discovered the presence of TRPV1 in hepatic stellate cells (HSCs) and aimed to delineate its function in this cell type and liver fibrosis. METHODS: TRPV1 expression was examined in liver biopsies from patients with liver fibrosis using quantitative real-time PCR and immunostaining. Its contribution to liver fibrosis was examined in Trpv1-/- mice, upon lentiviral delivery of the TRPV1 gene, and in human and mouse primary HSCs, using patch clamp, intracellular Ca2+ mobilization determination, FACS analyses and gain/loss of function experiments. Binding of sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) to TRPV1 was determined using mass spectrometry, co-immunoprecipitation, surface plasmon resonance, bioluminescence resonance energy transfer, and NanoBiT. RESULTS: TRPV1 mRNA levels are significantly downregulated in patients with liver fibrosis and mouse models, showing a negative correlation with F stage and α-smooth muscle actin expression, a marker of HSC activation. TRPV1 expression and function decrease during HSC activation in fibrotic livers in vivo or during culture. Genetic and pharmacological inhibition of TRPV1 in quiescent HSCs leads to NF-κB activation and pro-inflammatory cytokine production. TRPV1 requires binding of its N-terminal ankyrin repeat domain to the TIR-His583 (Toll/interleukin-1 receptor) domain of SARM1 to prevent HSCs from pro-inflammatory activation. Trpv1-/- mice display increased HSC activation and more severe liver fibrosis, whereas TRPV1 overexpression is antifibrotic in various disease models. CONCLUSION: The antifibrotic properties of TRPV1 are attributed to the prevention of HSC activation via the recruitment of SARM1, which could be an attractive therapeutic strategy against liver fibrosis. IMPACT AND IMPLICATIONS: We identified the neuronal channel protein TRPV1 as a gatekeeper of quiescence in hepatic stellate cells, a key driver of liver fibrogenesis and chronic liver disease. Physiologically expressed in healthy liver and consistently downregulated during liver fibrosis development, its therapeutic re-expression is expected to have few side effects, making it an attractive target diagnostic tool and drug candidate for industry and clinicians.


Subject(s)
Hepatic Stellate Cells , TRPV Cation Channels , Humans , Mice , Animals , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , TRPV Cation Channels/pharmacology , Hepatic Stellate Cells/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Gene Expression Regulation , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/pharmacology , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
16.
Hepatology ; 77(4): 1211-1227, 2023 04 01.
Article in English | MEDLINE | ID: mdl-35776660

ABSTRACT

BACKGROUND AND AIMS: In hereditary hemorrhagic telangiectasia (HHT), severe liver vascular malformations are associated with mutations in the Activin A Receptor-Like Type 1 ( ACVRL1 ) gene encoding ALK1, the receptor for bone morphogenetic protein (BMP) 9/BMP10, which regulates blood vessel development. Here, we established an HHT mouse model with exclusive liver involvement and adequate life expectancy to investigate ALK1 signaling in liver vessel formation and metabolic function. APPROACH AND RESULTS: Liver sinusoidal endothelial cell (LSEC)-selective Cre deleter line, Stab2-iCreF3 , was crossed with Acvrl1 -floxed mice to generate LSEC-specific Acvrl1 -deficient mice ( Alk1HEC-KO ). Alk1HEC-KO mice revealed hepatic vascular malformations and increased posthepatic flow, causing right ventricular volume overload. Transcriptomic analyses demonstrated induction of proangiogenic/tip cell gene sets and arterialization of hepatic vessels at the expense of LSEC and central venous identities. Loss of LSEC angiokines Wnt2 , Wnt9b , and R-spondin-3 ( Rspo3 ) led to disruption of metabolic liver zonation in Alk1HEC-KO mice and in liver specimens of patients with HHT. Furthermore, prion-like protein doppel ( Prnd ) and placental growth factor ( Pgf ) were upregulated in Alk1HEC-KO hepatic endothelial cells, representing candidates driving the organ-specific pathogenesis of HHT. In LSEC in vitro , stimulation or inhibition of ALK1 signaling counter-regulated Inhibitors of DNA binding (ID)1-3, known Alk1 transcriptional targets. Stimulation of ALK1 signaling and inhibition of ID1-3 function confirmed regulation of Wnt2 and Rspo3 by the BMP9/ALK1/ID axis. CONCLUSIONS: Hepatic endothelial ALK1 signaling protects from development of vascular malformations preserving organ-specific endothelial differentiation and angiocrine signaling. The long-term surviving Alk1HEC-KO HHT model offers opportunities to develop targeted therapies for this severe disease.


Subject(s)
Telangiectasia, Hereditary Hemorrhagic , Mice , Female , Animals , Telangiectasia, Hereditary Hemorrhagic/genetics , Endothelial Cells/metabolism , Placenta Growth Factor/metabolism , Liver/pathology , Signal Transduction , Growth Differentiation Factor 2/metabolism , Cell Adhesion Molecules, Neuronal/metabolism
17.
Gut ; 72(3): 549-559, 2023 03.
Article in English | MEDLINE | ID: mdl-35444014

ABSTRACT

OBJECTIVE: Multidrug resistance protein 2 (MRP2) is a bottleneck in bilirubin excretion. Its loss is sufficient to induce hyperbilirubinaemia, a prevailing characteristic of acute liver failure (ALF) that is closely associated with clinical outcome. This study scrutinises the transcriptional regulation of MRP2 under different pathophysiological conditions. DESIGN: Hepatic MRP2, farnesoid X receptor (FXR) and Forkhead box A2 (FOXA2) expression and clinicopathologic associations were examined by immunohistochemistry in 14 patients with cirrhosis and 22 patients with ALF. MRP2 regulatory mechanisms were investigated in primary hepatocytes, Fxr -/- mice and lipopolysaccharide (LPS)-treated mice. RESULTS: Physiologically, homeostatic MRP2 transcription is mediated by the nuclear receptor FXR/retinoid X receptor complex. Fxr-/- mice lack apical MRP2 expression and rapidly progress into hyperbilirubinaemia. In patients with ALF, hepatic FXR expression is undetectable, however, patients without infection maintain apical MRP2 expression and do not suffer from hyperbilirubinaemia. These patients express FOXA2 in hepatocytes. FOXA2 upregulates MRP2 transcription through binding to its promoter. Physiologically, nuclear FOXA2 translocation is inhibited by insulin. In ALF, high levels of glucagon and tumour necrosis factor α induce FOXA2 expression and nuclear translocation in hepatocytes. Impressively, ALF patients with sepsis express low levels of FOXA2, lose MRP2 expression and develop severe hyperbilirubinaemia. In this case, LPS inhibits FXR expression, induces FOXA2 nuclear exclusion and thus abrogates the compensatory MRP2 upregulation. In both Fxr -/- and LPS-treated mice, ectopic FOXA2 expression restored apical MRP2 expression and normalised serum bilirubin levels. CONCLUSION: FOXA2 replaces FXR to maintain MRP2 expression in ALF without sepsis. Ectopic FOXA2 expression to maintain MRP2 represents a potential strategy to prevent hyperbilirubinaemia in septic ALF.


Subject(s)
Hepatocyte Nuclear Factor 3-beta , Liver Failure, Acute , Multidrug Resistance-Associated Protein 2 , Animals , Mice , Bilirubin , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocytes/metabolism , Hyperbilirubinemia/metabolism , Hyperbilirubinemia/pathology , Lipopolysaccharides/metabolism , Liver/metabolism , Liver Failure, Acute/metabolism , Multidrug Resistance-Associated Protein 2/metabolism , ATP-Binding Cassette Sub-Family B Member 4
18.
Prog Mol Biol Transl Sci ; 190(1): 219-276, 2022.
Article in English | MEDLINE | ID: mdl-36008000

ABSTRACT

Medical abzymology has made a great contribution to the development of general autoimmunity theory: it has put the autoantibodies (Ab) as the key brick of the theory to the level of physiological functionality by providing such Ab with the ability to catalyze and mediate direct and independent cytotoxic effect on cellular and molecular targets. Natural catalytic autoantibodies (abzymes) while being a pool of canonical Abs and possessing catalytic activity belong to the new group of physiologically active substances whose features and properties are evolutionary consolidated in one functionally active biomolecule. Therefore, further studies on Ab-mediated autoAg degradation and other targeted Ab-mediated proteolysis may provide biomarkers of newer generations and thus a supplementary tool for assessing the disease progression and predicting disability of the patients and persons at risks. This chapter is a summary of current knowledge and prognostic perspectives toward catalytic Abs in autoimmunity and thus some autoimmune clinical cases, their role in pathogenesis, and the exploitation of both whole molecules and their constituent parts in developing highly effective targeted drugs of the future to come, and thus the therapeutic protocols being individualized.


Subject(s)
Antibodies, Catalytic , Autoimmunity , Antibodies, Catalytic/metabolism , Autoantibodies/metabolism , Biomarkers , Disease Progression , Humans
19.
Can J Gastroenterol Hepatol ; 2022: 1048104, 2022.
Article in English | MEDLINE | ID: mdl-35855954

ABSTRACT

Objectives: We assessed the potential of glial cell line-derived neurotrophic factor (GDNF) as a useful biomarker to predict cirrhosis in chronic hepatitis B (CHB) patients. Methods: A total of 735 patients from two medical centers (385 CHB patients and 350 healthy controls) were included to determine the association of serum and tissue GDNF levels with biopsy-proven cirrhosis. The diagnostic accuracy of serum GDNF (sGDNF) was estimated and compared with other indices of cirrhosis. Results: We showed significantly higher levels of sGDNF in CHB patients with fibrosis (28.4 pg/ml vs. 11.6 pg/ml in patients without) and patients with cirrhosis (33.8 pg/ml vs. 23.5 pg/ml in patients without). The areas under receiver operating curve (AUROCs) of sGDNF were 0.83 (95% confidence interval (CI): 0.80-0.87) for predicting liver fibrosis and 0.84 (95% CI: 0.79-0.89) for cirrhosis. Findings from the serum protein level and hepatic mRNA expression were consistent. Using the best cutoff to predict cirrhosis, we categorized the patients into sGDNF-high and sGDNF-low groups. The sGDNF-high group had significantly larger Masson's trichrome and reticulin staining-positive area, higher Scheuer score, and METAVIR fibrosis stage (all p < 0.001) but not steatosis. On multivariable regression, sGDNF was independently associated with cirrhosis with an odds ratio of 6.98 (95% CI: 1.10-17.94). Finally, we demonstrated that sGDNF outperformed AST to platelet ratio index, FIB-4, fibroscore, forn index, and fibrometer in differentiating F4 vs. F3. Conclusion: Using serum, tissue mRNA, and biopsy data, our study revealed a significant potential of sGDNF as a novel noninvasive biomarker for cirrhosis in CHB patients.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Hepatitis B, Chronic , Liver Cirrhosis , Aspartate Aminotransferases , Biomarkers/blood , Biopsy , Glial Cell Line-Derived Neurotrophic Factor/blood , Hepatitis B, Chronic/blood , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/virology , Platelet Count , RNA, Messenger , ROC Curve , Retrospective Studies
20.
BMJ Open ; 12(6): e054891, 2022 06 27.
Article in English | MEDLINE | ID: mdl-35760549

ABSTRACT

OBJECTIVES: To clarify non-alcoholic fatty liver disease (NAFLD) prevalence, risk factors and clinical outcome in an exemplary Chinese population, a cohort of company employees was followed up for 11 years. DESIGN: Retrospective cohort study. SETTING: Between 2006 and 2016 in Ning bo, China. PARTICIPANTS: 13 032 company employees. RESULTS: Over 11 years, the prevalence of NAFLD increased from 17.2% to 32.4% (men 20.5%-37% vs women 9.8%-22.2%). Male peak prevalence was between 40 and 60 years of age, whereas highest prevalence in women was at an age of 60 years and older. Logistic and Cox regression revealed 16 risk factors, including body mass index (BMI), albumin, white blood cell, triglycerides (TG), high-density lipoprotein, glutamyl transpeptidase, alanine transaminase, creatinine, urea acid, glucose, systolic blood pressure, diastolic blood pressure, blood sedimentation, haemoglobin, platelet and apolipoprotein B2 (p<0.05 for all factors). The area under the curve of these variables for NAFLD is 0.88. However, cause-effect analyses showed that only BMI, gender and TG directly contributed to NAFLD development. Over an 11-year follow-up period, 12.6%, 37.7% and 14.2% of male patients with NAFLD and 11.6%, 44.7% and 22.6% of female patients with NAFLD developed diabetes, hypertension and hyperuricaemia, respectively. Except one male patient who developed cirrhosis, no patients with NAFLD progressed into severe liver disease. CONCLUSION: Diabetes, hypertension and hyperuricaemia are the main clinical outcomes of NAFLD. Eleven years of NAFLD are not sufficient to cause severe liver disease. Age and obesity are direct risk factors for NAFLD. BMI, gender and TG are three parameters directly reflecting the occurrence of NAFLD.


Subject(s)
Diabetes Mellitus , Hypertension , Hyperuricemia , Non-alcoholic Fatty Liver Disease , Female , Follow-Up Studies , Humans , Hypertension/epidemiology , Male , Middle Aged , Non-alcoholic Fatty Liver Disease/epidemiology , Retrospective Studies , Triglycerides
SELECTION OF CITATIONS
SEARCH DETAIL