Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Ecol Resour ; 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36345645

ABSTRACT

Despite recent advances in high-throughput DNA sequencing technologies, a lack of locally relevant DNA reference databases limits the potential for DNA-based monitoring of biodiversity for conservation and biosecurity applications. Museums and national collections represent a compelling source of authoritatively identified genetic material for DNA database development, yet obtaining DNA barcodes from long-stored specimens may be difficult due to sample degradation. Here we demonstrate a sensitive and efficient laboratory and bioinformatic process for generating DNA barcodes from hundreds of invertebrate specimens simultaneously via the Illumina MiSeq system. Using this process, we recovered full-length (334) or partial (105) COI barcodes from 439 of 450 (98%) national collection-held invertebrate specimens. This included full-length barcodes from 146 specimens which produced low-yield DNA and no visible PCR bands, and which produced as little as a single sequence per specimen, demonstrating high sensitivity of the process. In many cases, the identity of the most abundant sequences per specimen were not the correct barcodes, necessitating the development of a taxonomy-informed process for identifying correct sequences among the sequencing output. The recovery of only partial barcodes for some taxa indicates a need to refine certain PCR primers. Nonetheless, our approach represents a highly sensitive, accurate and efficient method for targeted reference database generation, providing a foundation for DNA-based assessments and monitoring of biodiversity.

2.
FEMS Microbiol Ecol ; 97(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34864997

ABSTRACT

The biodiversity and structure of deep agricultural soil communities are poorly understood, especially for eukaryotes. Using DNA metabarcoding and co-occurrence networks, we tested whether prokaryote, fungal, protist, and nematode biodiversity declines with increasing depth (0-0.1,  0.3-0.5,  and 1.1-1.7m) in pastoral soil; whether deep soil organisms are subsets of those at the surface; and whether multi-kingdom networks become more interconnected with increasing depth. Depth-related richness declines were observed for almost all detected fungal classes, protist phyla, and nematode orders, but only 13 of 25 prokaryote phyla, of which nine had increasing richness with depth. Deep soil communities were not simply subsets of surface communities, with 3.8%-12.2% of eukaryotes and 13.2% of prokaryotes detected only in the deepest samples. Eukaryotes mainly occurred in the upper soil layers whereas prokaryotes were more evenly distributed across depths. Plant-feeding nematodes were most abundant in top soil, whereas bacteria feeders were more abundant in deep soil. Co-occurrence network structure differences suggested that deep soil communities are concentrated around scarce niches of resource availability, in contrast to more spatially homogenous and abundant resources at the surface. Together, these results demonstrate effects of depth on the composition, distribution, and structure of prokaryote and eukaryote soil communities.


Subject(s)
Nematoda , Soil , Animals , Biodiversity , Fungi/genetics , Soil Microbiology
3.
Elife ; 92020 05 19.
Article in English | MEDLINE | ID: mdl-32423527

ABSTRACT

The effects of land use on soil invertebrates - an important ecosystem component - are poorly understood. We investigated land-use impacts on a comprehensive range of soil invertebrates across New Zealand, measured using DNA metabarcoding and six biodiversity metrics. Rarity and phylogenetic rarity - direct measures of the number of species or the portion of a phylogeny unique to a site - showed stronger, more consistent responses across taxa to land use than widely used metrics of species richness, effective species numbers, and phylogenetic diversity. Overall, phylogenetic rarity explained the highest proportion of land use-related variance. Rarity declined from natural forest to planted forest, grassland, and perennial cropland for most soil invertebrate taxa, demonstrating pervasive impacts of agricultural land use on soil invertebrate communities. Commonly used diversity metrics may underestimate the impacts of land use on soil invertebrates, whereas rarity provides clearer and more consistent evidence of these impacts.


Living within the Earth's soil are millions of insects, worms and other invertebrates, which help keep the ground healthy and fertile. There is a growing concern that changing land-use habits, such as agriculture and urban development, are causing these populations of invertebrates to decline. However, to what extent different types of land use negatively impact soil invertebrates is not clear. Healthy habitats often have a greater variety of species. This biodiversity can be measured in a number of ways, ranging from counting the number of species, to more complex approaches that calculate a species' role in an ecosystem or how close it is to extinction. Finding a way to sensitively measure the biodiversity of soil invertebrates could further researcher's understanding of how different types of land use are affecting these communities. A new method known as DNA metabarcoding has made it easier to distinguish between different species and calculate the biodiversity of entire populations. Now, Dopheide et al. have used this technique to study invertebrate communities from 75 sites across New Zealand which have been impacted by different land-use habits. This revealed that the most reliable and consistent way to uncover how land use affects soil invertebrates was to measure the rarity of species (i.e. the number of unique species present at each site). Dopheide et al. found that agriculture negatively affected soil invertebrates and that most types of invertebrates responded in a similar way. Horticulture ­ such as orchards and vineyards ­ had the most severe impact, with the lowest variety of species compared to grassland or forest. Other measurements of biodiversity, such as the number of different species, may underestimate the negative impact agriculture is having on invertebrate communities. The findings of Dopheide et al. highlight why developing strategies to preserve and restore these communities is so important. However, more work is needed to understand what specifically is causing biodiversity to decline and how this effect can be reversed.


Subject(s)
Agriculture , Biodiversity , Forestry , Invertebrates/classification , Phylogeny , Soil , Animals , Crops, Agricultural , DNA Barcoding, Taxonomic , Environmental Monitoring , Forests , Grassland , Invertebrates/genetics , New Zealand , Population Dynamics
4.
Ecol Appl ; 29(4): e01877, 2019 06.
Article in English | MEDLINE | ID: mdl-30811075

ABSTRACT

Invertebrates are a major component of terrestrial ecosystems, however, estimating their biodiversity is challenging. We compiled an inventory of invertebrate biodiversity along an elevation gradient on the temperate forested island of Hauturu, New Zealand, by DNA barcoding of specimens obtained from leaf litter samples and pitfall traps. We compared the barcodes and biodiversity estimates from this data set with those from a parallel DNA metabarcoding analysis of soil from the same locations, and with pre-existing sequences in reference databases, before exploring the use of combined data sets as a basis for estimating total invertebrate biodiversity. We obtained 1,282 28S and 1,610 COI barcodes from a total of 1,947 invertebrate specimens, which were clustered into 247 (28S) and 366 (COI) OTUs, of which ≤ 10% were represented in GenBank. Coleoptera were most abundant (730 sequenced specimens), followed by Hymenoptera, Diptera, Lepidoptera, and Amphipoda. The most abundant OTU from both the 28S (153 sequences) and COI (140 sequences) data sets was an undescribed beetle from the family Salpingidae. Based on the occurrences of COI OTUs along the elevation gradient, we estimated there are ~1,000 arthropod species (excluding mites) on Hauturu, including 770 insects, of which 344 are beetles. A DNA metabarcoding analysis of soil DNA from the same sites resulted in the identification of similar numbers of OTUs in most invertebrate groups compared with the DNA barcoding, but less than 10% of the DNA barcoding COI OTUs were also detected by the metabarcoding analysis of soil DNA. A mark-recapture analysis based on the overlap between these data sets estimated the presence of approximately 6,800 arthropod species (excluding mites) on the island, including ~3,900 insects. Estimates of New Zealand-wide biodiversity for selected arthropod groups based on matching of the COI DNA barcodes with pre-existing reference sequences suggested over 13,200 insect species are present, including 4,000 Coleoptera, 2,200 Diptera, and 2,700 Hymenoptera species, and 1,000 arachnid species (excluding mites). These results confirm that metabarcoding analyses of soil DNA tends to recover different components of terrestrial invertebrate biodiversity compared to traditional invertebrate sampling, but the combined methods provide a novel basis for estimating invertebrate biodiversity.


Subject(s)
DNA Barcoding, Taxonomic , Ecosystem , Animals , Biodiversity , DNA , Invertebrates , Islands , New Zealand
5.
Gigascience ; 4: 46, 2015.
Article in English | MEDLINE | ID: mdl-26445670

ABSTRACT

BACKGROUND: There is an increasing demand for rapid biodiversity assessment tools that have a broad taxonomic coverage. Here we evaluate a suite of environmental DNA (eDNA) markers coupled with next generation sequencing (NGS) that span the tree of life, comparing them with traditional biodiversity monitoring tools within ten 20×20 meter plots along a 700 meter elevational gradient. RESULTS: From six eDNA datasets (one from each of 16S, 18S, ITS, trnL and two from COI) we identified sequences from 109 NCBI taxonomy-defined phyla or equivalent, ranging from 31 to 60 for a given eDNA marker. Estimates of alpha and gamma diversity were sensitive to the number of sequence reads, whereas beta diversity estimates were less sensitive. The average within-plot beta diversity was lower than between plots for all markers. The soil beta diversity of COI and 18S markers showed the strongest response to the elevational variation of the eDNA markers (COI: r=0.49, p<0.001; 18S: r=0.48, p<0.001). Furthermore pairwise beta diversities for these two markers were strongly correlated with those calculated from traditional vegetation and invertebrate biodiversity measures. CONCLUSIONS: Using a soil-based eDNA approach, we demonstrate that standard phylogenetic markers are capable of recovering sequences from a broad diversity of eukaryotes, in addition to prokaryotes by 16S. The COI and 18S eDNA markers are the best proxies for aboveground biodiversity based on the high correlation between the pairwise beta diversities of these markers and those obtained using traditional methods.


Subject(s)
Biodiversity , DNA/genetics , Multigene Family , Animals
6.
PLoS One ; 10(4): e0123179, 2015.
Article in English | MEDLINE | ID: mdl-25849814

ABSTRACT

We surveyed the functional gene composition and diversity of microbial biofilm communities in 18 New Zealand streams affected by different types of catchment land use, using a comprehensive functional gene array, GeoChip 3.0. A total of 5,371 nutrient cycling and energy metabolism genes within 65 gene families were detected among all samples (342 to 2,666 genes per stream). Carbon cycling genes were most common, followed by nitrogen cycling genes, with smaller proportions of sulphur, phosphorus cycling and energy metabolism genes. Samples from urban and native forest streams had the most similar functional gene composition, while samples from exotic forest and rural streams exhibited the most variation. There were significant differences between nitrogen and sulphur cycling genes detected in native forest and urban samples compared to exotic forest and rural samples, attributed to contrasting proportions of nitrogen fixation, denitrification, and sulphur reduction genes. Most genes were detected only in one or a few samples, with only a small minority occurring in all samples. Nonetheless, 42 of 65 gene families occurred in every sample and overall proportions of gene families were similar among samples from contrasting streams. This suggests the existence of functional gene redundancy among different stream biofilm communities despite contrasting taxonomic composition.


Subject(s)
Bacteria/genetics , Biofilms , Genes, Bacterial/genetics , Genetic Variation , Microbiota/genetics , Soil Microbiology , Bacteria/classification , Carbon Cycle/genetics , DNA, Bacterial/genetics , Ecosystem , Multigene Family , New Zealand , Nitrogen Cycle/genetics , Oligonucleotide Array Sequence Analysis , Phosphorus/metabolism , Sulfur/metabolism
7.
Environ Pollut ; 173: 117-24, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23202641

ABSTRACT

Concentrations of metals associated with sediments have traditionally been analysed to assess the extent of heavy metal contamination in freshwater environments. Stream biofilms present an alternative medium for this assessment which may be more relevant to the risk incurred by stream ecosystems as they are intensively grazed by aquatic organisms at a higher trophic level. Therefore, we investigated zinc, copper and lead concentrations in biofilms and sediments of 23 stream sites variously impacted by urbanisation. Simultaneously, biofilm bacterial and ciliate protozoan community structure was analysed by Automated Ribosomal Intergenic Spacer Analysis and Terminal Restriction Fragment Length Polymorphism, respectively. Statistical analysis revealed that biofilm associated metals explained a greater proportion of the variations observed in bacterial and ciliate communities than did sediment associated-metals. This study suggests that the analysis of metal concentrations in biofilms provide a good assessment of detrimental effects of metal contaminants on aquatic biota.


Subject(s)
Biofilms , Geologic Sediments/chemistry , Metals, Heavy/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Biodiversity , Ecosystem , Environmental Monitoring , Geologic Sediments/microbiology , Polymorphism, Restriction Fragment Length , Rivers/microbiology , Urbanization
8.
Appl Environ Microbiol ; 77(13): 4564-72, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21602372

ABSTRACT

Protozoa are important components of microbial food webs, but protozoan feeding preferences and their effects in the context of bacterial biofilms are not well understood. The feeding interactions of two contrasting ciliates, the free-swimming filter feeder Tetrahymena sp. and the surface-associated predator Chilodonella sp., were investigated using biofilm-forming bacteria genetically modified to express fluorescent proteins. According to microscopy, both ciliates readily consumed cells from both Pseudomonas costantinii and Serratia plymuthica biofilms. When offered a choice between spatially separated biofilms, each ciliate showed a preference for P. costantinii biofilms. Experiments with bacterial cell extracts indicated that both ciliates used dissolved chemical cues to locate biofilms. Chilodonella sp. evidently used bacterial chemical cues as a basis for preferential feeding decisions, but it was unclear whether Tetrahymena sp. did also. Confocal microscopy of live biofilms revealed that Tetrahymena sp. had a major impact on biofilm morphology, forming holes and channels throughout S. plymuthica biofilms and reducing P. costantinii biofilms to isolated, grazing-resistant microcolonies. Grazing by Chilodonella sp. resulted in the development of less-defined trails through S. plymuthica biofilms and caused P. costantinii biofilms to become homogeneous scatterings of cells. It was not clear whether the observed feeding preferences for spatially separated P. costantinii biofilms over S. plymuthica biofilms resulted in selective targeting of P. costantinii cells in mixed biofilms. Grazing of mixed biofilms resulted in the depletion of both types of bacteria, with Tetrahymena sp. having a larger impact than Chilodonella sp., and effects similar to those seen in grazed single-species biofilms.


Subject(s)
Biofilms/growth & development , Ciliophora/physiology , Microbial Interactions , Pseudomonas/physiology , Serratia/physiology , Ciliophora/metabolism , Pseudomonas/growth & development , Serratia/growth & development
9.
Appl Environ Microbiol ; 75(16): 5261-72, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19561192

ABSTRACT

Ciliates are an important component of aquatic ecosystems, acting as predators of bacteria and protozoa and providing nutrition for organisms at higher trophic levels. Understanding of the diversity and ecological role of ciliates in stream biofilms is limited, however. Ciliate diversity in biofilm samples from four streams subject to different impacts by human activity was assessed using microscopy and terminal restriction fragment length polymorphism (T-RFLP) analysis of 18S rRNA sequences. Analysis of 3' and 5' terminal fragments yielded very similar estimates of ciliate diversity. The diversity detected using microscopy was consistently lower than that suggested by T-RFLP analysis, indicating the existence of genetic diversity not apparent by morphological examination. Microscopy and T-RFLP analyses revealed similar relative trends in diversity between different streams, with the lowest level of biofilm-associated ciliate diversity found in samples from the least-impacted stream and the highest diversity in samples from moderately to highly impacted streams. Multivariate analysis provided evidence of significantly different ciliate communities in biofilm samples from different streams and seasons, particularly between a highly degraded urban stream and less impacted streams. Microscopy and T-RFLP data both suggested the existence of widely distributed, resilient biofilm-associated ciliates as well as ciliate taxa restricted to sites with particular environmental conditions, with cosmopolitan taxa being more abundant than those with restricted distributions. Differences between ciliate assemblages were associated with water quality characteristics typical of urban stream degradation and may be related to factors such as nutrient availability and macroinvertebrate communities. Microscopic and molecular techniques were considered to be useful complementary approaches for investigation of biofilm ciliate communities.


Subject(s)
Biofilms/growth & development , Ciliophora/classification , Ecosystem , Genetic Variation , Microscopy/methods , Polymorphism, Restriction Fragment Length , Rivers/chemistry , Rivers/parasitology , Animals , Biodiversity , Ciliophora/genetics , Ciliophora/growth & development , DNA, Protozoan/analysis , Humans , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
10.
Appl Environ Microbiol ; 74(6): 1740-7, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18223112

ABSTRACT

Free-living protozoa are thought to be of fundamental importance in aquatic ecosystems, but there is limited understanding of their diversity and ecological role, particularly in surface-associated communities such as biofilms. Existing eukaryote-specific PCR primers were used to survey 18S rRNA gene sequence diversity in stream biofilms but poorly revealed protozoan diversity, demonstrating a need for protozoan-targeted primers. Group-specific PCR primers targeting 18S rRNA genes of the protozoan phylum Ciliophora were therefore designed and tested using DNA extracted from cultured protozoan isolates. The two most reliable primer combinations were applied to stream biofilm DNA, followed by cloning and sequencing analysis. Of 44 clones derived from primer set 384F/1147R, 86% were of probable ciliate origin, as were 25% of 44 clones detected by primer set 121F/1147R. A further 29% of 121F/1147R-detected clones matched sequences from the closely related phylum Apicomplexa. The highly ciliate-specific primer set 384F/1147R was subsequently used in PCRs on biofilm DNA from four streams exhibiting different levels of human impact, revealing differences in ciliate sequence diversity in samples from each site. Of a total of 240 clones, 73% were of probable ciliate origin; 54 different putative ciliate sequences were detected from throughout seven taxonomic ciliate classes. Sequences from Oligohymenophorea were most commonly detected in all samples, followed by either Spirotrichea or Phyllopharyngea. Restriction fragment length polymorphism profile-based analysis of clones suggested a potentially higher level of diversity than did sequencing. Nevertheless, newly designed PCR primers 384F/1147R were considered to provide an effective molecular basis for characterization of ciliate diversity in stream biofilms.


Subject(s)
Biofilms , Ciliophora/genetics , Rivers/parasitology , Animals , Biodiversity , Ciliophora/classification , Ciliophora/growth & development , DNA Primers/genetics , DNA, Protozoan/chemistry , DNA, Protozoan/genetics , Genetic Variation , Molecular Sequence Data , Polymorphism, Restriction Fragment Length/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...