Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Biol Sci ; 290(1990): 20221847, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36629108

ABSTRACT

Species respond idiosyncratically to environmental variation, which may generate phenological mismatches. We assess the consequences of such mismatches for solitary bees. During 9 years, we studied flowering phenology and nesting phenology and demography of five wood-nesting solitary bee species representing a broad gradient of specialization/generalization in the use of floral resources. We found that the reproductive performance and population growth rate of bees tended to be lower with increasing nesting-flowering mismatches, except for the most generalized bee species. Our findings help elucidate the role of phenological mismatches for the demography of wild pollinators, which perform key ecosystem functions and provide important services for humanity. Furthermore, if climate change increases phenological mismatches in this system, we expect negative consequences of climate change for specialist bees.


Subject(s)
Ecosystem , Reproduction , Bees , Animals , Population Growth , Climate Change , Pollination , Flowers
2.
J Anim Ecol ; 86(6): 1372-1379, 2017 10.
Article in English | MEDLINE | ID: mdl-28696537

ABSTRACT

Fire represents a frequent disturbance in many ecosystems, which can affect plant-pollinator assemblages and hence the services they provide. Furthermore, fire events could affect the architecture of plant-pollinator interaction networks, modifying the structure and function of communities. Some pollinators, such as wood-nesting bees, may be particularly affected by fire events due to damage to the nesting material and its long regeneration time. However, it remains unclear whether fire influences the structure of bee-plant interactions. Here, we used quantitative plant-wood-nesting bee interaction networks sampled across four different post-fire age categories (from freshly-burnt to unburnt sites) in an arid ecosystem to test whether the abundance of wood-nesting bees, the breadth of resource use and the plant-bee community structure change along a post-fire age gradient. We demonstrate that freshly-burnt sites present higher abundances of generalist than specialist wood-nesting bees and that this translates into lower network modularity than that of sites with greater post-fire ages. Bees do not seem to change their feeding behaviour across the post-fire age gradient despite changes in floral resource availability. Despite the effects of fire on plant-bee interaction network structure, these mutualistic networks seem to be able to recover a few years after the fire event. This result suggests that these interactions might be highly resilient to this type of disturbance.


Subject(s)
Bees/physiology , Fires , Plant Physiological Phenomena , Pollination , Animals , Argentina , Female , Pollen , Population Dynamics
3.
PeerJ ; 4: e2250, 2016.
Article in English | MEDLINE | ID: mdl-27547556

ABSTRACT

BACKGROUND: Diverse flower communities are more stable in floral resource production along the flowering season, but the question about how the diversity and stability of resources affect pollinator reproduction remains open. High plant diversity could favor short foraging trips, which in turn would enhance bee fitness. In addition to plant diversity, greater temporal stability of floral resources in diverse communities could favor pollinator fitness because such communities are likely to occupy the phenological space more broadly, increasing floral availability for pollinators throughout the season. In addition, this potential effect of flower diversity on bee reproduction could be stronger for generalist pollinators because they can use a broader floral spectrum. Based on above arguments we predicted that pollinator reproduction would be positively correlated to flower diversity, and to temporal stability in flower production, and that this relationship would be stronger for the most generalized pollinator species. MATERIALS AND METHODS: Using structural equation models, we evaluated the effect of these variables and other ecological factors on three estimates of bee reproduction (average number of brood cells per nest per site, total number of brood cells per site, and total number of nests per site), and whether such effects were modulated by bee generalization on floral resources. RESULTS: Contrary to our expectations, flower diversity had no effect on bee reproduction, stability in flower production had a weakly negative effect on one of the bee reproductive variables, and the strength of the fitness-diversity relationship was unrelated to bee generalization. In contrast, elevation had a negative effect on bee reproduction, despite the narrow elevation range encompassed by our sites. DISCUSSION: Flower diversity did not affect the reproduction of the solitary bees studied here. This result could stem from the context dependence of the diversity-stability relationship, given that elevation had a positive effect on flower diversity but a negative effect on bee reproduction. Although high temporal stability in flower production is expected to enhance pollinator reproduction, in our study it had a weakly negative-instead of positive-effect on the average number of brood cells per nest. Other environmental factors that vary with elevation could influence bee reproduction. Our study focused on a small group of closely-related bee species, which cautions against generalization of our findings to other groups of pollinators. More studies are clearly needed to assess the extent to which pollinator demography is influenced by the diversity of floral resources.

4.
Ecology ; 93(4): 719-25, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22690622

ABSTRACT

Recent studies of plant-animal mutualistic networks have assumed that interaction frequency between mutualists predicts species impacts (population-level effects), and that field estimates of interaction strength (per-interaction effects) are unnecessary. Although existing evidence supports this assumption for the effect of animals on plants, no studies have evaluated it for the reciprocal effect of plants on animals. We evaluate this assumption using data on the reproductive effects of pollinators on plants and the reciprocal reproductive effects of plants on pollinators. The magnitude of species impacts of plants on pollinators, the reciprocal impacts of pollinators on plants, and their asymmetry were well predicted by interaction frequency. However, interaction strength was a key determinant of the sign of species impacts. These results underscore the importance of quantifying interaction strength in studies of mutualistic networks. We also show that the distributions of interaction strengths and species impacts are highly skewed, with few strong and many weak interactions. This skewed distribution matches the pattern observed in food webs, suggesting that the community-wide organization of species interactions is fundamentally similar between mutualistic and antagonistic interactions. Our results have profound ecological implications, given the key role of interaction strength for community stability.


Subject(s)
Insecta/physiology , Plants/classification , Pollination/physiology , Animals , Species Specificity
5.
J Anim Ecol ; 81(1): 190-200, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21815890

ABSTRACT

1. The study of plant-pollinator interactions in a network context is receiving increasing attention. This approach has helped to identify several emerging network patterns such as nestedness and modularity. However, most studies are based only on qualitative information, and some ecosystems, such as deserts and tropical forests, are underrepresented in these data sets. 2. We present an exhaustive analysis of the structure of a 4-year plant-pollinator network from the Monte desert in Argentina using qualitative and quantitative tools. We describe the structure of this network and evaluate sampling completeness using asymptotic species richness estimators. Our goal is to assess the extent to which the realized sampling effort allows for an accurate description of species interactions and to estimate the minimum number of additional censuses required to detect 90% of the interactions. We evaluated completeness of detection of the community-wide pollinator fauna, of the pollinator fauna associated with each plant species and of the plant-pollinator interactions. We also evaluated whether sampling completeness was influenced by plant characteristics, such as flower abundance, flower life span, number of interspecific links (degree) and selectiveness in the identity of their flower visitors, as well as sampling effort. 3. We found that this desert plant-pollinator network has a nested structure and that it exhibits modularity and high network-level generalization. 4. In spite of our high sampling effort, and although we sampled 80% of the pollinator fauna, we recorded only 55% of the interactions. Furthermore, although a 64% increase in sampling effort would suffice to detect 90% of the pollinator species, a fivefold increase in sampling effort would be necessary to detect 90% of the interactions. 5. Detection of interactions was incomplete for most plant species, particularly specialists with a long flowering season and high flower abundance, or generalists with short flowering span and scant flowers. Our results suggest that sampling of a network with the same effort for all plant species is inadequate to sample interactions. 6. Sampling the diversity of interactions is labour intensive, and most plant-pollinator networks published to date are likely to be undersampled. Our analysis allowed estimating the completeness of our sampling, the additional effort needed to detect most interactions and the plant traits that influence the detection of their interactions.


Subject(s)
Biota , Insecta/physiology , Plant Physiological Phenomena , Pollination , Animals , Argentina , Desert Climate , Flowers/physiology , Models, Biological , Population Density , Seasons , Species Specificity
6.
Ecology ; 92(1): 19-25, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21560672

ABSTRACT

Most rare species appear to be specialists in plant-pollinator networks. This observation could result either from real ecological processes or from sampling artifacts. Several methods have been proposed to overcome these artifacts, but they have the limitation of being based on visitation data, causing interactions involving rare visitor species to remain undersampled. We propose the analysis of food composition in bee trap nests to assess the reliability of network specialization estimates. We compared data from a plant-pollinator network in the Monte Desert of Villavicencio Nature Reserve, Argentina, sampled by visit observation, and data from trap nests sampled at the same time and location. Our study shows that trap nest sampling was good for estimating rare species degree. The rare species in the networks appear to be more specialized than they really are, and the bias in the estimation of the species degree increases with the rareness. The low species degree of these rare species in the visitation networks results from insufficient sampling of the rare interactions, which could have important consequences for network structure.


Subject(s)
Bees , Ecosystem , Plants/metabolism , Pollination/physiology , Animals , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...