Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 133(21)2023 11 01.
Article in English | MEDLINE | ID: mdl-37698938

ABSTRACT

Unabated activation of the NLR family pyrin domain-containing 3 (NLRP3) inflammasome is linked with the pathogenesis of various inflammatory disorders. Polo-like kinase 1 (PLK1) has been widely studied for its role in mitosis. Here, using both pharmacological and genetic approaches, we demonstrate that PLK1 promoted NLRP3 inflammasome activation at cell interphase. Using an unbiased proximity-dependent biotin identification (Bio-ID) screen for the PLK1 interactome in macrophages, we show an enhanced proximal association of NLRP3 with PLK1 upon NLRP3 inflammasome activation. We further confirmed the interaction between PLK1 and NLRP3 and identified the interacting domains. Mechanistically, we show that PLK1 orchestrated the microtubule-organizing center (MTOC) structure and NLRP3 subcellular positioning upon inflammasome activation. Treatment with a selective PLK1 kinase inhibitor suppressed IL-1ß production in in vivo inflammatory models, including LPS-induced endotoxemia and monosodium urate-induced peritonitis in mice. Our results uncover a role of PLK1 in regulating NLRP3 inflammasome activation during interphase and identify pharmacological inhibition of PLK1 as a potential therapeutic strategy for inflammatory diseases with excessive NLRP3 inflammasome activation.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Animals , Mice , Inflammasomes/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Protein Serine-Threonine Kinases/genetics , Cell Cycle Proteins/genetics , Interleukin-1beta/genetics , Mice, Inbred C57BL , Polo-Like Kinase 1
2.
Nature ; 594(7864): 560-565, 2021 06.
Article in English | MEDLINE | ID: mdl-34040253

ABSTRACT

Myocardial infarction is a major cause of premature death in adults. Compromised cardiac function after myocardial infarction leads to chronic heart failure with systemic health complications and a high mortality rate1. Effective therapeutic strategies are needed to improve the recovery of cardiac function after myocardial infarction. More specifically, there is a major unmet need for a new class of drugs that can improve cardiomyocyte contractility, because inotropic therapies that are currently available have been associated with high morbidity and mortality in patients with systolic heart failure2,3 or have shown a very modest reduction of risk of heart failure4. Microtubule detyrosination is emerging as an important mechanism for the regulation of cardiomyocyte contractility5. Here we show that deficiency of microtubule-affinity regulating kinase 4 (MARK4) substantially limits the reduction in the left ventricular ejection fraction after acute myocardial infarction in mice, without affecting infarct size or cardiac remodelling. Mechanistically, we provide evidence that MARK4 regulates cardiomyocyte contractility by promoting phosphorylation of microtubule-associated protein 4 (MAP4), which facilitates the access of vasohibin 2 (VASH2)-a tubulin carboxypeptidase-to microtubules for the detyrosination of α-tubulin. Our results show how the detyrosination of microtubules in cardiomyocytes is finely tuned by MARK4 to regulate cardiac inotropy, and identify MARK4 as a promising therapeutic target for improving cardiac function after myocardial infarction.


Subject(s)
Heart Failure/physiopathology , Microtubules/chemistry , Myocardial Infarction/physiopathology , Protein Serine-Threonine Kinases/physiology , Tyrosine/chemistry , Angiogenic Proteins , Animals , Carboxypeptidases , Cells, Cultured , Mice , Mice, Inbred C57BL , Mice, Knockout , Microtubule-Associated Proteins , Myocytes, Cardiac , Stroke Volume , Ventricular Function, Left
3.
Nat Immunol ; 20(1): 40-49, 2019 01.
Article in English | MEDLINE | ID: mdl-30455459

ABSTRACT

Resolution of inflammation is essential for tissue homeostasis and represents a promising approach to inflammatory disorders. Here we found that developmental endothelial locus-1 (DEL-1), a secreted protein that inhibits leukocyte-endothelial adhesion and inflammation initiation, also functions as a non-redundant downstream effector in inflammation clearance. In human and mouse periodontitis, waning of inflammation was correlated with DEL-1 upregulation, whereas resolution of experimental periodontitis failed in DEL-1 deficiency. This concept was mechanistically substantiated in acute monosodium-urate-crystal-induced inflammation, where the pro-resolution function of DEL-1 was attributed to effective apoptotic neutrophil clearance (efferocytosis). DEL-1-mediated efferocytosis induced liver X receptor-dependent macrophage reprogramming to a pro-resolving phenotype and was required for optimal production of at least certain specific pro-resolving mediators. Experiments in transgenic mice with cell-specific overexpression of DEL-1 linked its anti-leukocyte-recruitment action to endothelial cell-derived DEL-1 and its efferocytic/pro-resolving action to macrophage-derived DEL-1. Thus, the compartmentalized expression of DEL-1 facilitates distinct homeostatic functions in an appropriate context that can be harnessed therapeutically.


Subject(s)
Carrier Proteins/metabolism , Inflammation/immunology , Macrophages/physiology , Neutrophils/immunology , Periodontitis/immunology , Adult , Animals , Calcium-Binding Proteins , Carrier Proteins/genetics , Cell Adhesion Molecules , Cellular Reprogramming , Cytokines/metabolism , Gene Expression Regulation , Humans , Inflammation/chemically induced , Intercellular Signaling Peptides and Proteins , K562 Cells , Liver X Receptors/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Phagocytosis
4.
J Cell Mol Med ; 22(1): 141-151, 2018 01.
Article in English | MEDLINE | ID: mdl-28840975

ABSTRACT

Many patients with ischaemic heart disease also have diabetes. As myocardial infarction is a major cause of mortality and morbidity in these patients, treatments that increase cell survival in response to ischaemia and reperfusion are needed. Exosomes-nano-sized, lipid vesicles released from cells-can protect the hearts of non-diabetic rats. We previously showed that exosomal HSP70 activates a cardioprotective signalling pathway in cardiomyocytes culminating in ERK1/2 and HSP27 phosphorylation. Here, we investigated whether the exosomal cardioprotective pathway remains intact in the setting of type II diabetes. Exosomes were isolated by differential centrifugation from non-diabetic and type II diabetic patients, from non-diabetic and Goto Kakizaki type II diabetic rats, and from normoglycaemic and hyperglycaemic endothelial cells. Exosome size and number were not significantly altered by diabetes. CD81 and HSP70 exosome markers were increased in diabetic rat exosomes. However, exosomes from diabetic rats no longer activated the ERK1/2 and HSP27 cardioprotective pathway and were no longer protective in a primary rat cardiomyocytes model of hypoxia and reoxygenation injury. Hyperglycaemic culture conditions were sufficient to impair protection by endothelial exosomes. Importantly, however, exosomes from non-diabetic rats retained the ability to protect cardiomyocytes from diabetic rats. Exosomes from diabetic plasma have lost the ability to protect cardiomyocytes, but protection can be restored with exosomes from non-diabetic plasma. These results support the concept that exosomes may be used to protect cardiomyocytes against ischaemia and reperfusion injury, even in the setting of type II diabetes.


Subject(s)
Cardiotonic Agents/therapeutic use , Diabetes Mellitus, Type 2/therapy , Exosomes/metabolism , Aged , Aged, 80 and over , Animals , Diabetes Mellitus, Type 2/pathology , Exosomes/ultrastructure , Extracellular Signal-Regulated MAP Kinases/metabolism , HSP27 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Middle Aged , Myocytes, Cardiac/metabolism , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Phosphorylation , Rats, Wistar , Tetraspanin 28/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...