Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 201: 116217, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520999

ABSTRACT

Satellite retrieval of total suspended solids (TSS) and chlorophyll-a (chl-a) was performed for the Gold Coast Broadwater, a micro-tidal estuarine lagoon draining a highly developed urban catchment area with complex and competing land uses. Due to the different water quality properties of the rivers and creeks draining into the Broadwater, sampling sites were grouped in clusters, with cluster-specific empirical/semi-empirical prediction models developed and validated with a leave-one-out cross validation approach for robustness. For unsampled locations, a weighted-average approach, based on their proximity to sampled sites, was developed. Confidence intervals were also generated, with a bootstrapping approach and visualised through maps. Models yielded varying accuracies (R2 = 0.40-0.75). Results show that, for the most significant poor water quality event in the dataset, caused by summer rainfall events, elevated TSS concentrations originated in the northern rivers, slowly spreading southward. Conversely, high chl-a concentrations were first recorded in the southernmost regions of the Broadwater.


Subject(s)
Chlorophyll , Environmental Monitoring , Australia , Chlorophyll/analysis , Chlorophyll A , Environmental Monitoring/methods , Water Quality
2.
Mar Pollut Bull ; 185(Pt A): 114234, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36257244

ABSTRACT

This study establishes baseline water quality characteristics for the Gold Coast Broadwater, southern Moreton Bay (Australia) utilising routinely monitored parameters between 2016 and 2021, across 18 sites. Combined site mean concentrations of NOx-N, NH3-N and total nitrogen were 11.4 ± 33.4 µg/L, 12.7 ± 27.2 µg/L, and 169 ± 109 µg/L, respectively, whilst PO4-P and total phosphorous were 7.30 ± 5.10 µg/L and 21.7 ± 14.1 µg/L. Additionally, total suspended solids and turbidity combined site means were 6.6 ± 6.0 mg/L and 3.4 ± 2.9 NTU, respectively. During high rainfall periods nutrient concentrations increased by up to >200-, >150-, 15-, 12- and >12-fold for NOx-N, NH3-N, TN, PO4-P and TP, respectively, compared to quiescent conditions. Furthermore, TSS and NTU values increased by up to 15- and 40-fold during periods of measured rainfall compared to quiescent conditions.


Subject(s)
Water Pollutants, Chemical , Water Quality , Bays , Environmental Monitoring , Nitrogen/analysis , Phosphorus/analysis , Water Pollutants, Chemical/analysis
3.
Sci Total Environ ; 654: 284-291, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30445328

ABSTRACT

Metals and metalloids are priority contaminants due to their non-degradable and bioaccumulative nature, and their ability to regulate and perturb diverse physiological processes in various species. Metal(loid)s are known to cause oxidative stress through production of reactive oxygen species (ROS), thus related endpoints like lipid peroxidation (LPO) have received considerable attention as biomarkers of exposure. However, the implications of metal(loid) toxicity including LPO on actual lipid profiles of species inhabiting contaminated systems are poorly understood. Here we applied Nuclear Magnetic Resonance (NMR) spectroscopy for untargeted lipidomics of mosquitofish (Gambusia holbrooki) collected from reference and metal(loid)-contaminated wetlands. We measured a range of trace elements in water and fish using inductively coupled plasma - mass spectrometry (ICP-MS), and interpreted site differences in the lipid profiles of mosquitofish in the context of known physiological responses to sub-lethal metal(loid) exposure. Results indicate deregulation of cellular membrane lipids (i.e., glycerophospholipids, cholesterol and sphingolipids) and increased energy storage molecules (i.e., triacylglycerols and fatty acids) in fish from the contaminated wetland. These responses are consistent with the recognised induction of oxidative stress pathways in organisms exposed to metal(loid)s and could also be symptomatic of mitochondrial dysfunction and endocrine disruption. It is difficult to attribute metal(loid)s as the sole factor causing differences between wetlands, and a more controlled experimental approach is therefore warranted to further explore mechanistic pathways. Nevertheless, our study highlights the benefits of untargeted 1H NMR-based lipidomics as a relatively fast and simple approach for field-scale assessment and monitoring of organisms inhabiting metal(loid) contaminated environments.


Subject(s)
Antimony/analysis , Arsenic/analysis , Cell Membrane/metabolism , Cyprinodontiformes/metabolism , Energy Metabolism/drug effects , Environmental Monitoring/methods , Lipid Metabolism/drug effects , Water Pollutants, Chemical/analysis , Wetlands , Animals , Antimony/toxicity , Lipidoses , New South Wales , Nuclear Magnetic Resonance, Biomolecular , Water Pollutants, Chemical/toxicity , Water Quality
4.
Environ Pollut ; 243(Pt B): 1096-1105, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30253300

ABSTRACT

There is considerable interest in applying omics techniques, which have proven extremely valuable for laboratory-based toxicology studies, towards field-scale ecotoxicology and environmental monitoring. Concerns that confounding factors in natural ecosystems may exacerbate variability in omics datasets must be addressed to validate the transition from laboratory to field. This study explores how temporal variability related to seasonal and climatic trends influence qualitative and quantitative metabolomics outcomes, in fish from reference and metal(loid)-polluted wetlands in Australia. Female mosquitofish (Gambusia holbrooki) were sampled on two separate occasions, from a rehabilitated tailings wetland at the site of historic antimony (Sb) processing and a reference wetland with comparable water quality. The first sampling coincided with greater monthly rainfall and colder water temperature, whereas the second sampling was drier and water was warmer. Despite temporal changes and associated differences in metal(loid) concentrations, site differences in metabolite profiles were qualitatively very similar between sampling events. However, quantitative differences were observed, with a greater number of significantly altered metabolites identified during the second sampling event, which coincided with greater metal(loid) concentrations in both water and fish. The majority of identified metabolites were elevated in fish from the contaminated wetland, but with notable decreases in several metabolites that are known to play a role in various aspects of metal(loid) binding, detoxification and excretion. Specifically, decreased aspartate, histidine, myo-inositol, taurine and choline were observed in fish from the contaminated wetland, and may therefore represent a metabolite suite that is broadly indicative of metal toxicity. Quantitative differences between sampling events are suggestive of a dose-response relationship observable at the cellular level which, if harnessed, may be useful for assigning levels of concern based on the degree of change in a multi-parameter set of metabolite biomarkers.


Subject(s)
Environmental Monitoring/methods , Metals/toxicity , Water Pollutants, Chemical/toxicity , Wetlands , Animals , Antimony , Australia , Choline , Cold Temperature , Cyprinodontiformes/physiology , Ecosystem , Ecotoxicology , Female , Magnetic Resonance Imaging , Metabolomics , Metals/analysis , Reproducibility of Results , Seafood , Temperature , Water , Water Pollutants, Chemical/analysis , Water Quality
SELECTION OF CITATIONS
SEARCH DETAIL
...