Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Mol Ther Nucleic Acids ; 35(1): 102112, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38292874

ABSTRACT

Chronic hepatitis B virus (HBV) infection remains a global health problem due to the lack of treatments that prevent viral rebound from HBV covalently closed circular (ccc)DNA. In addition, HBV DNA integrates in the human genome, serving as a source of hepatitis B surface antigen (HBsAg) expression, which impairs anti-HBV immune responses. Cytosine base editors (CBEs) enable precise conversion of a cytosine into a thymine within DNA. In this study, CBEs were used to introduce stop codons in HBV genes, HBs and Precore. Transfection with mRNA encoding a CBE and a combination of two guide RNAs led to robust cccDNA editing and sustained reduction of the viral markers in HBV-infected HepG2-NTCP cells and primary human hepatocytes. Furthermore, base editing efficiently reduced HBsAg expression from HBV sequences integrated within the genome of the PLC/PRF/5 and HepG2.2.15 cell lines. Finally, in the HBV minicircle mouse model, using lipid nanoparticulate delivery, we demonstrated antiviral efficacy of the base editing approach with a >3log10 reduction in serum HBV DNA and >2log10 reduction in HBsAg, and 4/5 mice showing HBsAg loss. Combined, these data indicate that base editing can introduce mutations in both cccDNA and integrated HBV DNA, abrogating HBV replication and silencing viral protein expression.

2.
Mol Ther Nucleic Acids ; 10: 55-63, 2018 Mar 02.
Article in English | MEDLINE | ID: mdl-29499956

ABSTRACT

mRNA therapeutics hold promise for the treatment of diseases requiring intracellular protein expression and for use in genome editing systems, but mRNA must transfect the desired tissue and cell type to be efficacious. Nanoparticle vectors that deliver the mRNA are often evaluated using mRNA encoding for reporter genes such as firefly luciferase (FLuc); however, single-cell resolution of mRNA expression cannot generally be achieved with FLuc, and, thus, the transfected cell populations cannot be determined without additional steps or experiments. To more rapidly identify which types of cells an mRNA formulation transfects in vivo, we describe a Cre recombinase (Cre)-based system that permanently expresses fluorescent tdTomato protein in transfected cells of genetically modified mice. Following in vivo application of vectored Cre mRNA, it is possible to visualize successfully transfected cells via Cre-mediated tdTomato expression in bulk tissues and with single-cell resolution. Using this system, we identify previously unknown transfected cell types of an existing mRNA delivery vehicle in vivo and also develop a new mRNA formulation capable of transfecting lung endothelial cells. Importantly, the same formulations with mRNA encoding for fluorescent protein delivered to wild-type mice did not produce sufficient signal for any visualization in vivo, demonstrating the significantly improved sensitivity of our Cre-based system. We believe that the system described here may facilitate the identification and characterization of mRNA delivery vectors to new tissues and cell types.

3.
Nano Lett ; 17(3): 1326-1335, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28273716

ABSTRACT

The induction of a strong cytotoxic T cell response is an important prerequisite for successful immunotherapy against many viral diseases and tumors. Nucleotide vaccines, including mRNA vaccines with their intracellular antigen synthesis, have been shown to be potent activators of a cytotoxic immune response. The intracellular delivery of mRNA vaccines to the cytosol of antigen presenting immune cells is still not sufficiently well understood. Here, we report on the development of a lipid nanoparticle formulation for the delivery of mRNA vaccines to induce a cytotoxic CD 8 T cell response. We show transfection of dendritic cells, macrophages, and neutrophils. The efficacy of the vaccine was tested in an aggressive B16F10 melanoma model. We found a strong CD 8 T cell activation after a single immunization. Treatment of B16F10 melanoma tumors with lipid nanoparticles containing mRNA coding for the tumor-associated antigens gp100 and TRP2 resulted in tumor shrinkage and extended the overall survival of the treated mice. The immune response can be further increased by the incorporation of the adjuvant LPS. In conclusion, the lipid nanoparticle formulation presented here is a promising vector for mRNA vaccine delivery, one that is capable of inducing a strong cytotoxic T cell response. Further optimization, including the incorporation of different adjuvants, will likely enhance the potency of the vaccine.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/immunology , Lipids/chemistry , Melanoma, Experimental/therapy , Nanoparticles/chemistry , RNA, Messenger/chemistry , Animals , CD8-Positive T-Lymphocytes/pathology , Cancer Vaccines/therapeutic use , Cytotoxicity, Immunologic , Humans , Immunotherapy , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology , Mice, Inbred C57BL , Ovalbumin/genetics , RNA, Messenger/administration & dosage , Vaccines, Synthetic/immunology , Vaccines, Synthetic/therapeutic use
4.
Adv Mater ; 28(15): 2939-43, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26889757

ABSTRACT

Thousands of human diseases could be treated by selectively controlling the expression of specific proteins in vivo. A new series of alkenyl amino alcohol (AAA) ionizable lipid nanoparticles (LNPs) capable of delivering human mRNA with unprecedented levels of in vivo efficacy is demonstrated. This study highlights the importance of utilizing synthesis tools in tandem with biological inspiration to understand and improve nucleic acid delivery in vivo.


Subject(s)
Alkenes/chemistry , Amino Alcohols/chemistry , Biomimetic Materials/chemistry , Drug Carriers/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Erythropoietin/genetics , Humans , RNA, Messenger/chemistry , RNA, Messenger/genetics
5.
Nano Lett ; 16(2): 842-8, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26727632

ABSTRACT

Safe and effective delivery is required for siRNA and mRNA-based therapeutics to reach their potential. Here, we report on the development of poly(glycoamidoamine) brush nanoparticles as delivery vehicles for siRNA and mRNA. These polymers were capable of significant delivery of siRNA against FVII and mRNA-encoding erythropoietin (EPO) in mice. Importantly, these nanoparticles were well-tolerated at their effective dose based on analysis of tissue histology, systemic cytokine levels, and liver enzyme chemistry. The polymer brush nanoparticles reported here are promising for therapeutic applications.


Subject(s)
Gene Transfer Techniques , Genetic Therapy , Nanoparticles/administration & dosage , RNA, Messenger/administration & dosage , Animals , Erythropoietin/antagonists & inhibitors , Erythropoietin/genetics , Factor VII/genetics , Humans , Mice , Nanoparticles/adverse effects , RNA, Small Interfering/administration & dosage
6.
Nano Lett ; 15(11): 7300-6, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26469188

ABSTRACT

Intracellular delivery of messenger RNA (mRNA) has the potential to induce protein production for many therapeutic applications. Although lipid nanoparticles have shown considerable promise for the delivery of small interfering RNAs (siRNA), their utility as agents for mRNA delivery has only recently been investigated. The most common siRNA formulations contain four components: an amine-containing lipid or lipid-like material, phospholipid, cholesterol, and lipid-anchored polyethylene glycol, the relative ratios of which can have profound effects on the formulation potency. Here, we develop a generalized strategy to optimize lipid nanoparticle formulations for mRNA delivery to the liver in vivo using Design of Experiment (DOE) methodologies including Definitive Screening and Fractional Factorial Designs. By simultaneously varying lipid ratios and structures, we developed an optimized formulation which increased the potency of erythropoietin-mRNA-loaded C12-200 lipid nanoparticles 7-fold relative to formulations previously used for siRNA delivery. Key features of this optimized formulation were the incorporation of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and increased ionizable lipid:mRNA weight ratios. Interestingly, the optimized lipid nanoparticle formulation did not improve siRNA delivery, indicating differences in optimized formulation parameter design spaces for siRNA and mRNA. We believe the general method described here can accelerate in vivo screening and optimization of nanoparticle formulations with large multidimensional design spaces.


Subject(s)
Gene Transfer Techniques , Lipids/chemistry , Nanoparticles/chemistry , RNA, Messenger/administration & dosage , Cell Line, Tumor , Humans , Lipids/administration & dosage , Liposomes/administration & dosage , Liposomes/chemistry , Liver/drug effects , Nanoparticles/administration & dosage , Phosphatidylethanolamines/administration & dosage , Phosphatidylethanolamines/chemistry , Polyethylene Glycols/chemistry , RNA, Messenger/chemistry , Transfection
7.
Nat Rev Genet ; 15(8): 541-55, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25022906

ABSTRACT

Gene-based therapy is the intentional modulation of gene expression in specific cells to treat pathological conditions. This modulation is accomplished by introducing exogenous nucleic acids such as DNA, mRNA, small interfering RNA (siRNA), microRNA (miRNA) or antisense oligonucleotides. Given the large size and the negative charge of these macromolecules, their delivery is typically mediated by carriers or vectors. In this Review, we introduce the biological barriers to gene delivery in vivo and discuss recent advances in material sciences, nanotechnology and nucleic acid chemistry that have yielded promising non-viral delivery systems, some of which are currently undergoing testing in clinical trials. The diversity of these systems highlights the recent progress of gene-based therapy using non-viral approaches.


Subject(s)
Genetic Therapy , Genetic Vectors/genetics , Animals , DNA/genetics , Gene Transfer Techniques , Genetic Vectors/administration & dosage , Humans , RNA/genetics
8.
Nat Commun ; 5: 4277, 2014 Jun 27.
Article in English | MEDLINE | ID: mdl-24969323

ABSTRACT

One of the most significant challenges in the development of clinically viable delivery systems for RNA interference therapeutics is to understand how molecular structures influence delivery efficacy. Here, we have synthesized 1,400 degradable lipidoids and evaluate their transfection ability and structure-function activity. We show that lipidoid nanoparticles mediate potent gene knockdown in hepatocytes and immune cell populations on IV administration to mice (siRNA EC50 values as low as 0.01 mg kg(-1)). We identify four necessary and sufficient structural and pKa criteria that robustly predict the ability of nanoparticles to mediate greater than 95% protein silencing in vivo. Because these efficacy criteria can be dictated through chemical design, this discovery could eliminate our dependence on time-consuming and expensive cell culture assays and animal testing. Herein, we identify promising degradable lipidoids and describe new design criteria that reliably predict in vivo siRNA delivery efficacy without any prior biological testing.


Subject(s)
Gene Knockdown Techniques/methods , Hepatocytes , Leukocytes , Lipids/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Animals , Drug Carriers , Mice , Transfection
9.
Adv Healthc Mater ; 3(9): 1392-7, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24623658

ABSTRACT

New lipid-like nanomaterials are developed to simultaneously regulate expression of multiple genes. Self-assembled nanoparticles are capable of efficiently encapsulating pDNA and siRNA. These nanoparticles are shown to induce simultaneous gene expression and silencing both in vitro and in vivo.


Subject(s)
Gene Expression , Gene Silencing , Lipids/chemistry , Nanostructures/chemistry , Transfection/methods , Animals , HeLa Cells , Humans , Lipids/pharmacokinetics , Mice , Mice, Inbred C57BL , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Triazines/chemistry
10.
Proc Natl Acad Sci U S A ; 111(11): 3955-60, 2014 Mar 18.
Article in English | MEDLINE | ID: mdl-24516150

ABSTRACT

siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.002 mg/kg), rats (ED50 < 0.01 mg/kg), and nonhuman primates (over 95% silencing at 0.3 mg/kg). Apolipoprotein E plays a significant role in the potency of cKK-E12 both in vitro and in vivo. cKK-E12 was highly selective toward liver parenchymal cell in vivo, with orders of magnitude lower doses needed to silence in hepatocytes compared with endothelial cells and immune cells in different organs. Toxicity studies showed that cKK-E12 was well tolerated in rats at a dose of 1 mg/kg (over 100-fold higher than the ED50). To our knowledge, this is the most efficacious and selective nonviral siRNA delivery system for gene silencing in hepatocytes reported to date.


Subject(s)
Drug Delivery Systems/methods , Lipopeptides/chemistry , Nanoparticles/chemistry , RNA, Small Interfering/administration & dosage , Animals , Apolipoproteins E/metabolism , Cryoelectron Microscopy , Gene Silencing , Hepatocytes/metabolism , Macaca fascicularis , Mice , RNA, Small Interfering/therapeutic use , Rats
11.
ACS Nano ; 6(8): 6922-9, 2012 Aug 28.
Article in English | MEDLINE | ID: mdl-22770391

ABSTRACT

A significant challenge in the development of clinically viable siRNA delivery systems is a lack of in vitro-in vivo translatability: many delivery vehicles that are initially promising in cell culture do not retain efficacy in animals. Despite its importance, little information exists on the predictive nature of in vitro methodologies, most likely due to the cost and time associated with generating in vitro-in vivo data sets. Recently, high-throughput techniques have been developed that have allowed the examination of hundreds of lipid nanoparticle formulations for transfection efficiency in multiple experimental systems. The large resulting data set has allowed the development of correlations between in vitro and characterization data and in vivo efficacy for hepatocellular delivery vehicles. Consistency of formulation technique and the type of cell used for in vitro experiments was found to significantly affect correlations, with primary hepatocytes and HeLa cells yielding the most predictive data. Interestingly, in vitro data acquired using HeLa cells were more predictive of in vivo performance than mouse hepatoma Hepa1-6 cells. Of the characterization parameters, only siRNA entrapment efficiency was partially predictive of in vivo silencing potential, while zeta-potential and, surprisingly, nanoparticle size (when <300 nm) as measured by dynamic light scattering were not. These data provide guiding principles in the development of clinically viable siRNA delivery materials and have the potential to reduce experimental costs while improving the translation of materials into animals.


Subject(s)
Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Lipids/chemistry , Nanocapsules/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Transfection/methods , Animals , Cell Line, Tumor , Gene Silencing , HeLa Cells , Humans , Mice , Nanocapsules/ultrastructure , Particle Size , RNA, Small Interfering/administration & dosage , Surface Properties
12.
Mol Ther ; 18(7): 1357-64, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20461061

ABSTRACT

Lipid nanoparticles (LNPs) have proven to be highly efficient carriers of short-interfering RNAs (siRNAs) to hepatocytes in vivo; however, the precise mechanism by which this efficient delivery occurs has yet to be elucidated. We found that apolipoprotein E (apoE), which plays a major role in the clearance and hepatocellular uptake of physiological lipoproteins, also acts as an endogenous targeting ligand for ionizable LNPs (iLNPs), but not cationic LNPs (cLNPs). The role of apoE was investigated using both in vitro studies employing recombinant apoE and in vivo studies in wild-type and apoE(-/-) mice. Receptor dependence was explored in vitro and in vivo using low-density lipoprotein receptor (LDLR(-/-))-deficient mice. As an alternative to endogenous apoE-based targeting, we developed a targeting approach using an exogenous ligand containing a multivalent N-acetylgalactosamine (GalNAc)-cluster, which binds with high affinity to the asialoglycoprotein receptor (ASGPR) expressed on hepatocytes. Both apoE-based endogenous and GalNAc-based exogenous targeting appear to be highly effective strategies for the delivery of iLNPs to liver.


Subject(s)
RNA Interference/physiology , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Asialoglycoprotein Receptor/metabolism , Female , HeLa Cells , Hepatocytes/metabolism , Humans , Ligands , Mice , Mice, Inbred C57BL , Nanoparticles/chemistry , Receptors, LDL/genetics , Receptors, LDL/metabolism
13.
Nat Biotechnol ; 28(2): 172-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20081866

ABSTRACT

We adopted a rational approach to design cationic lipids for use in formulations to deliver small interfering RNA (siRNA). Starting with the ionizable cationic lipid 1,2-dilinoleyloxy-3-dimethylaminopropane (DLinDMA), a key lipid component of stable nucleic acid lipid particles (SNALP) as a benchmark, we used the proposed in vivo mechanism of action of ionizable cationic lipids to guide the design of DLinDMA-based lipids with superior delivery capacity. The best-performing lipid recovered after screening (DLin-KC2-DMA) was formulated and characterized in SNALP and demonstrated to have in vivo activity at siRNA doses as low as 0.01 mg/kg in rodents and 0.1 mg/kg in nonhuman primates. To our knowledge, this represents a substantial improvement over previous reports of in vivo endogenous hepatic gene silencing.


Subject(s)
Drug Carriers/chemistry , Drug Compounding/methods , Drug Design , Lipids/chemistry , RNA, Small Interfering/chemistry , Transfection/methods , Cations , RNA, Small Interfering/administration & dosage
14.
Proc Natl Acad Sci U S A ; 107(5): 1864-9, 2010 Feb 02.
Article in English | MEDLINE | ID: mdl-20080679

ABSTRACT

Significant effort has been applied to discover and develop vehicles which can guide small interfering RNAs (siRNA) through the many barriers guarding the interior of target cells. While studies have demonstrated the potential of gene silencing in vivo, improvements in delivery efficacy are required to fulfill the broadest potential of RNA interference therapeutics. Through the combinatorial synthesis and screening of a different class of materials, a formulation has been identified that enables siRNA-directed liver gene silencing in mice at doses below 0.01 mg/kg. This formulation was also shown to specifically inhibit expression of five hepatic genes simultaneously, after a single injection. The potential of this formulation was further validated in nonhuman primates, where high levels of knockdown of the clinically relevant gene transthyretin was observed at doses as low as 0.03 mg/kg. To our knowledge, this formulation facilitates gene silencing at orders-of-magnitude lower doses than required by any previously described siRNA liver delivery system.


Subject(s)
Biocompatible Materials/chemistry , Gene Silencing , Lipids/chemistry , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , Animals , Biocompatible Materials/chemical synthesis , Drug Delivery Systems , Factor VII/antagonists & inhibitors , Factor VII/genetics , HeLa Cells , Hepatocytes/metabolism , Humans , Lipids/chemical synthesis , Macaca fascicularis , Mice , Mice, Inbred C57BL , Molecular Structure , RNA Interference
15.
Mol Ther ; 17(5): 872-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19259063

ABSTRACT

RNA interference therapeutics afford the potential to silence target gene expression specifically, thereby blocking production of disease-causing proteins. The development of safe and effective systemic small interfering RNA (siRNA) delivery systems is of central importance to the therapeutic application of siRNA. Lipid and lipid-like materials are currently the most well-studied siRNA delivery systems for liver delivery, having been utilized in several animal models, including nonhuman primates. Here, we describe the development of a multicomponent, systemic siRNA delivery system, based on the novel lipid-like material 98N(12)-5(1). We show that in vivo delivery efficacy is affected by many parameters, including the formulation composition, nature of particle PEGylation, degree of drug loading, and biophysical parameters such as particle size. In particular, small changes in the anchor chain length of poly(ethylene glycol) (PEG) lipids can result in significant effects on in vivo efficacy. The lead formulation developed is liver targeted (>90% injected dose distributes to liver) and can induce fully reversible, long-duration gene silencing without loss of activity following repeat administration.


Subject(s)
Lipids/chemistry , Liver/metabolism , RNA, Small Interfering/chemistry , Animals , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Factor VII/genetics , Factor VII/metabolism , Lipids/chemical synthesis , Mice , Mice, Inbred C57BL , RNA Interference/physiology , RNA, Small Interfering/administration & dosage
16.
Mol Ther ; 16(12): 1995-2001, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18781145

ABSTRACT

A significant barrier to the successful general development of small-interfering RNA (siRNA) therapeutics is the ability to deliver them systemically to target organs and cell types. In this study, we have developed a mouse strain that will facilitate the evaluation of the efficacy of siRNA delivery strategies. This strain contains robust ubiquitous expression of firefly luciferase from germ line Cre-mediated recombination of the ROSA26-LSL-Luc allele. We show that luciferase is highly and uniformly expressed in all tissues examined. Using this mouse model, we describe a facile assay that enables the assessment of the pharmacodynamics of a systemically delivered siRNA formulation. These mice can also be used as universal donors, enabling the efficient and sensitive monitoring of cell trafficking or tissue transplantation. The primary advantage of this approach is that siRNA efficacy against a nonessential target can be easily evaluated in any tissue. This strain should generally enhance the ability to rapidly screen, compare and optimize various siRNA formulations for tissue-targeted or -enhanced systemic delivery in a preclinical development setting.


Subject(s)
Genes, Reporter/genetics , Luciferases/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/pharmacokinetics , Animals , Female , Gene Expression/drug effects , Gene Expression/genetics , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Luciferases/metabolism , Male , Mice , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/analysis , T-Lymphocytes/cytology , T-Lymphocytes/immunology
17.
Nat Biotechnol ; 26(5): 561-9, 2008 May.
Article in English | MEDLINE | ID: mdl-18438401

ABSTRACT

The safe and effective delivery of RNA interference (RNAi) therapeutics remains an important challenge for clinical development. The diversity of current delivery materials remains limited, in part because of their slow, multi-step syntheses. Here we describe a new class of lipid-like delivery molecules, termed lipidoids, as delivery agents for RNAi therapeutics. Chemical methods were developed to allow the rapid synthesis of a large library of over 1,200 structurally diverse lipidoids. From this library, we identified lipidoids that facilitate high levels of specific silencing of endogenous gene transcripts when formulated with either double-stranded small interfering RNA (siRNA) or single-stranded antisense 2'-O-methyl (2'-OMe) oligoribonucleotides targeting microRNA (miRNA). The safety and efficacy of lipidoids were evaluated in three animal models: mice, rats and nonhuman primates. The studies reported here suggest that these materials may have broad utility for both local and systemic delivery of RNA therapeutics.


Subject(s)
Combinatorial Chemistry Techniques/methods , Drug Carriers/chemistry , Drug Design , Lipids/chemistry , RNA Interference , RNA/administration & dosage , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...