Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Pollut ; 284: 117209, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33932832

ABSTRACT

Contaminant levels are lower in Antarctica than elsewhere in the world because of its low anthropogenic activities. However, the northern region of the Antarctic Peninsula, is close to South America and experiences the greatest anthropogenic pressure in Antarctica. Here, we investigated, in two Antarctic Peninsula islands, intra and interspecific factors that influence the concentrations of 17 trace elements (TEs) in blood and feathers of three penguin species breeding sympatrically in relation to their trophic ecology assessed via a stable isotopic approach (C, N and S). Geographical location, foraging zone (δ13C and δ34S) and diet influences the interspecific difference, and sex and maturity stage diet influence the intraspecific difference of Pygoscelis penguins. Penguins from Livingston showed higher values (mean, ng. g-1, dry weight - dw) of Zn (103), Mn (0.3), and Fe (95) than those from King George Island (Zn: 80, Mn: 1.9, and Fe: 11). Gender-related differences were observed, as males showed significantly higher values (mean, ng. g-1, dw) of Rb (3.4) and δ15N in blood of gentoo, and Ca (1344) in Adélie feathers. Chicks of gentoo and Adélie presented higher Zn, Mg, Ca, and Sr and lower 13C values in blood than adults. The highest concentrations (mean, ng. g-1, dw) of Cd (0.2) and Cu (26), and the lowest δ15N values were found in chinstrap. Geographical, intraspecific (i.e., ontogenetic and gender-related) and interspecific differences in feeding seemed to have influenced TE and stable isotope values in these animals. The TE bioaccumulation by penguins may have also been influenced by natural enrichment in environmental levels of these elements, which seems to be the case for Fe, Zn, and Mn. However, the high level of some of the TEs (Mn, Cd, and Cr) may reflect the increase of local and global human activities.


Subject(s)
Spheniscidae , Trace Elements , Animals , Antarctic Regions , Feathers/chemistry , Humans , Islands , Male , South America , Trace Elements/analysis
2.
J Trace Elem Med Biol ; 34: 50-5, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26854245

ABSTRACT

This work aimed to investigate metal bioaccumulation by mussels (Perna perna) and Lion's Scallop (Nodipecten nodosus) farmed in tropical bays, in order to estimate spatial and temporal variation in the exposure to these elements, as well as human health risk. The concentration of each measured element was considered for this evaluation, using maximum residue level (MRL) in foods established by the Brazilian (ANVISA), American (USFDA) and European Communities (EC) legislations. Values for estimated daily ingestion (EDI) were determined for metals intake through mussel and scallop consumption. These estimates were compared with the reference value of (PTDI) proposed by World Health Organization (WHO). Trace elements concentration was measured on ninety mussels P. perna (tissue) and ninety Lion's Scallop N. nodosus (muscle and gonad) reared in four different tropical areas of the Southeast Brazilian coast, between 2009 and 2010. Zinc (Zn), Iron (Fe), Copper (Cu), Manganese (Mn), Chrome (Cr), Nickel (Ni), Cadmium (Cd) and Lead (Pb) concentrations were measured by flame atomic absorption spectrometry after acid mineralization. Cd and Mn were more efficiently bioaccumulated by scallops than mussels and the opposite was found for Fe, Cu and Ni. Guanabara Bay and Sepetiba Bay were considered the most impacted between ecosystems studied. Higher Cd values in Arraial do Cabo in the other sites studied were associated with upwelling that occurs in the region. Consumption of both species cannot be considered safe, because the Cu and Cr concentrations, in accordance with the limits established by the Brazilian Agency (ANVISA). On the other hand, any EDI value exceeded the corresponding value of the PTDI, proposed by World Health Organization (WHO).


Subject(s)
Bivalvia/metabolism , Metals/metabolism , Water Pollutants, Chemical/metabolism , Animals , Brazil , Cadmium/analysis , Cadmium/metabolism , Chromium/analysis , Chromium/metabolism , Copper/analysis , Copper/metabolism , Environmental Monitoring , Metals/analysis , Water Pollutants, Chemical/analysis
3.
Environ Pollut ; 158(5): 1800-8, 2010 May.
Article in English | MEDLINE | ID: mdl-19932538

ABSTRACT

Blubber samples from 33 Guiana dolphins (Sotalia guianensis) from three estuaries (Guanabara, Sepetiba/Ilha Grande and Paranaguá Bays) of Southern and Southeastern Brazil were analyzed for organochlorine compounds (DDTs, PCBs and HCB). The sampled individuals were incidentally captured in gillnet fishery between 1995 and 2005. The concentrations (in ng/g lipids) varied from 652 to 23 555 for SigmaDDT; from 765 to 99 175 for SigmaPCB; and from <4.4 to 156 for HCB. The results have shown that cetaceans from Brazil present organochlorine concentrations that are comparable to those reported for highly industrialized regions of Northern Hemisphere. Using discriminant analysis it was possible to verify that the dolphin populations from the three bays present different organochlorine accumulation patterns. This feature allows the use of this set of pollutants as an auxiliary tool for identification of different populations of the species off Brazilian Coast.


Subject(s)
Adipose Tissue/chemistry , Dolphins/classification , Dolphins/metabolism , Hydrocarbons, Chlorinated/metabolism , Water Pollutants, Chemical/metabolism , Animals , Brazil , Polychlorinated Biphenyls/metabolism , Seawater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL