Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Br J Cancer ; 130(11): 1758-1769, 2024 May.
Article in English | MEDLINE | ID: mdl-38582812

ABSTRACT

BACKGROUND: Cancer-associated fibroblasts (CAFs) are a dominant cell type in the stroma of non-small cell lung cancer (NSCLC). Fibroblast heterogeneity reflects subpopulations of CAFs, which can influence prognosis and treatment efficacy. We describe the subtypes of CAFs in NSCLC. METHODS: Primary human NSCLC resections were assessed by flow cytometry and multiplex immunofluorescence for markers of fibroblast activation which allowed identification of CAF subsets. Survival data were analysed for our NSCLC cohort consisting of 163 patients to understand prognostic significance of CAF subsets. RESULTS: We identified five CAF populations, termed CAF S1-S5. CAF-S5 represents a previously undescribed population, and express FAP and PDPN but lack the myofibroblast marker αSMA, whereas CAF-S1 populations express all three. CAF-S5 are spatially further from tumour regions then CAF-S1 and scRNA data demonstrate an inflammatory phenotype. The presence of CAF-S1 or CAF-S5 is correlated to worse survival outcome in NSCLC, despite curative resection, highlighting the prognostic importance of CAF subtypes in NSCLC. TCGA data suggest the predominance of CAF-S5 has a poor prognosis across several cancer types. CONCLUSION: This study describes the fibroblast heterogeneity in NSCLC and the prognostic importance of the novel CAF-S5 subset where its presence correlates to worse survival outcome.


Subject(s)
Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Membrane Glycoproteins , Membrane Proteins , Humans , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/mortality , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Lung Neoplasms/mortality , Prognosis , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Female , Male , Endopeptidases , Gelatinases/metabolism , Gelatinases/genetics , Serine Endopeptidases/metabolism , Serine Endopeptidases/genetics , Aged , Middle Aged , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Tumor Microenvironment
2.
Int J Surg Pathol ; : 10668969241234321, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627896

ABSTRACT

Introduction. The identification of mitotic figures is essential for the diagnosis, grading, and classification of various different tumors. Despite its importance, there is a paucity of literature reporting the consistency in interpreting mitotic figures among pathologists. This study leverages publicly accessible datasets and social media to recruit an international group of pathologists to score an image database of more than 1000 mitotic figures collectively. Materials and Methods. Pathologists were instructed to randomly select a digital slide from The Cancer Genome Atlas (TCGA) datasets and annotate 10-20 mitotic figures within a 2 mm2 area. The first 1010 submitted mitotic figures were used to create an image dataset, with each figure transformed into an individual tile at 40x magnification. The dataset was redistributed to all pathologists to review and determine whether each tile constituted a mitotic figure. Results. Overall pathologists had a median agreement rate of 80.2% (range 42.0%-95.7%). Individual mitotic figure tiles had a median agreement rate of 87.1% and a fair inter-rater agreement across all tiles (kappa = 0.284). Mitotic figures in prometaphase had lower percentage agreement rates compared to other phases of mitosis. Conclusion. This dataset stands as the largest international consensus study for mitotic figures to date and can be utilized as a training set for future studies. The agreement range reflects a spectrum of criteria that pathologists use to decide what constitutes a mitotic figure, which may have potential implications in tumor diagnostics and clinical management.

3.
Transl Lung Cancer Res ; 13(2): 355-361, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38496695

ABSTRACT

Lung cancer is the most common cause of cancer-related deaths worldwide. Early detection improves outcomes, however, existing sampling techniques are associated with suboptimal diagnostic yield and procedure-related complications. Autofluorescence-based fluorescence-lifetime imaging microscopy (FLIM), a technique which measures endogenous fluorophore decay rates, may aid identification of optimal biopsy sites in suspected lung cancer. Our fibre-based fluorescence-lifetime imaging system, utilising 488 nm excitation, which is deliverable via existing diagnostic platforms, enables real-time visualisation and lifetime analysis of distal alveolar lung structure. We evaluated the diagnostic accuracy of the fibre-based fluorescence-lifetime imaging system to detect changes in fluorescence lifetime in freshly resected ex vivo lung cancer and adjacent healthy tissue as a first step towards future translation. The study compares paired non-small cell lung cancer (NSCLC) and non-cancerous tissues with gold standard diagnostic pathology to assess the performance of the technique. Paired NSCLC and non-cancerous lung tissues were obtained from thoracic resection patients (N=21). A clinically compatible 488 nm fluorescence-lifetime endomicroscopy platform was used to acquire simultaneous fluorescence intensity and lifetime images. Fluorescence lifetimes were calculated using a computationally-lightweight, rapid lifetime determination method. Fluorescence lifetime was significantly reduced in ex vivo lung cancer, compared with non-cancerous lung tissue [mean ± standard deviation (SD), 1.79±0.40 vs. 2.15±0.26 ns, P<0.0001], and fluorescence intensity images demonstrated distortion of alveolar elastin autofluorescence structure. Fibre-based fluorescence-lifetime imaging demonstrated good performance characteristics for distinguishing lung cancer, from adjacent non-cancerous tissue, with 81.0% sensitivity and 71.4% specificity. Our novel fibre-based fluorescence-lifetime imaging system, which enables label-free imaging and quantitative lifetime analysis, discriminates ex vivo lung cancer from adjacent healthy tissue. This minimally invasive technique has potential to be translated as a real-time biopsy guidance tool, capable of optimising diagnostic accuracy in lung cancer.

4.
Crohns Colitis 360 ; 6(1): otae003, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38352118

ABSTRACT

Background: Formylated peptide receptor (FPR)-1 is a G-coupled receptor that senses foreign bacterial and host-derived mitochondrial formylated peptides (FPs), leading to innate immune system activation. Aim: We sought to investigate the role of FPR1-mediated inflammation and its potential as a therapeutic target in inflammatory bowel disease (IBD). Methods: We characterized FPR1 gene and protein expression in 8 human IBD (~1000 patients) datasets with analysis on disease subtype, mucosal inflammation, and drug response. We performed in vivo dextran-sulfate sodium (DSS) colitis in C57/BL6 FPR1 knockout mice. In ex vivo studies, we studied the role of mitochondrial FPs and pharmacological blockade of FPR1 using cyclosporin H in human peripheral blood neutrophils. Finally, we assess mitochondrial FPs as a potential mechanistic biomarker in the blood and stools of patients with IBD. Results: Detailed in silico analysis in human intestinal biopsies showed that FPR1 is highly expressed in IBD (n = 207 IBD vs 67 non-IBD controls, P < .001), and highly correlated with gut inflammation in ulcerative colitis (UC) and Crohn's disease (CD) (both P < .001). FPR1 receptor is predominantly expressed in leukocytes, and we showed significantly higher FPR1+ve neutrophils in inflamed gut tissue section in IBD (17 CD and 24 UC; both P < .001). Further analysis in 6 independent IBD (data available under Gene Expression Omnibus accession numbers GSE59071, GSE206285, GSE73661, GSE16879, GSE92415, and GSE235970) showed an association with active gut inflammation and treatment resistance to infliximab, ustekinumab, and vedolizumab. FPR1 gene deletion is protective in murine DSS colitis with lower gut neutrophil inflammation. In the human ex vivo neutrophil system, mitochondrial FP, nicotinamide adenine dinucleotide dehydrogenase subunit-6 (ND6) is a potent activator of neutrophils resulting in higher CD62L shedding, CD63 expression, reactive oxygen species production, and chemotactic capacity; these effects are inhibited by cyclosporin H. We screened for mitochondrial ND6 in IBD (n = 54) using ELISA and detected ND6 in stools with median values of 2.2 gg/mL (interquartile range [IQR] 0.0-4.99; range 0-53.3) but not in blood. Stool ND6 levels, however, were not significantly correlated with paired stool calprotectin, C-reactive protein, and clinical IBD activity. Conclusions: Our data suggest that FPR1-mediated neutrophilic inflammation is a tractable target in IBD; however, further work is required to clarify the clinical utility of mitochondrial FPs as a potential mechanistic marker for future stratification.

5.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37648263

ABSTRACT

PURPOSE: An improved mechanistic understanding of immunosuppressive pathways in non-small cell lung cancer (NSCLC) is important to develop novel diagnostic and therapeutic approaches. Here, we investigate the prognostic significance of the ectonucleotidases CD39 and CD73 in NSCLC. EXPERIMENTAL DESIGN: The expression and localization of CD39, CD73 and CD103 was digitally quantified in a cohort of 162 early treatment naïve NSCLC patients using multiplex-immunofluorescence and related to patient outcome. Expression among different cell-populations was assessed via flow cytometry. Targeted RNA-Seq was performed on CD4+ and CD8+ T cells from digested NSCLC tumor tissue and single-cell RNA-Seq data was analyzed to investigate the functional significance of CD39+ T cell populations. RESULTS: We demonstrate that flow cytometry of early untreated NSCLC patients shows an upregulation of CD39 expression in the tumor tissue among natural killer (NK) cells, fibroblasts and T cells. CD73 expression is mainly found among fibroblasts and Epcam+cells in the tumor tissue. Multiplex Immunofluorescence in a cohort of 162 early untreated NSCLC patients demonstrates that CD39 expression is mainly localized in the tumor stroma while CD73 expression is equally distributed between tumor nest and stroma, and high expression of CD39 and CD73 in the tumor stroma is associated with poor recurrence-free survival (RFS) at 5 years. Additionally, we find that CD8+T cells located in the tumor nest express CD103 and the density of CD39+CD103+CD8+ T cells in the tumor nest predicts improved RFS at 5 years. Targeted RNA-Seq shows that the tumor microenvironment of NSCLC upregulates regulatory pathways in CD4+ T cells and exhaustion in CD8+ T cells, and analysis of a single cell RNA sequencing dataset shows that CD39+CD4+ cells are enriched in Treg signature gene-sets, and CD39+CD103+ cytotoxic T lymphocyte show gene signatures indicative of an exhausted cytotoxic phenotype with upregulated expression of CXCL13. CONCLUSIONS: Knowledge of patterns of distribution and location are required to understand the prognostic impact of CD39+ T cell populations in NSCLC. This study provides an improved understanding of spatial and functional characteristics of CD39+ T cells and their significance to patient outcome.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , CD8-Positive T-Lymphocytes , CD4-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , Tumor Microenvironment
6.
Front Oncol ; 13: 1194515, 2023.
Article in English | MEDLINE | ID: mdl-37397358

ABSTRACT

Introduction: The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods: Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results: We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion: These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.

7.
Cancers (Basel) ; 14(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36077656

ABSTRACT

Augmenting T cell mediated tumor killing via immunogenic cancer cell death (ICD) is the cornerstone of emerging immunotherapeutic approaches. We investigated the potential of methylene blue photodynamic therapy (MB-PDT) to induce ICD in human lung cancer. Non-Small Cell Lung Cancer (NSCLC) cell lines and primary human lung cancer organoids were evaluated in co-culture killing assays with MB-PDT and light emitting diodes (LEDs). ICD was characterised using immunoblotting, immunofluorescence, flow cytometry and confocal microscopy. Phototherapy with MB treatment and low energy LEDs decreased the proliferation of NSCLC cell lines inducing early necrosis associated with reduced expression of the anti-apoptotic protein, Bcl2 and increased expression of ICD markers, calreticulin (CRT), intercellular cell-adhesion molecule-1 (ICAM-1) and major histocompatibility complex I (MHC-I) in NSCLC cells. MB-PDT also potentiated CD8+ T cell-mediated cytolysis of lung cancer via granzyme B in lung cancer cells and primary human lung cancer organoids.

8.
Sci Immunol ; 7(71): eabm4032, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35559667

ABSTRACT

Epithelial tissues such as lung and skin are exposed to the environment and therefore particularly vulnerable to damage during injury or infection. Rapid repair is therefore essential to restore function and organ homeostasis. Dysregulated epithelial tissue repair occurs in several human disease states, yet how individual cell types communicate and interact to coordinate tissue regeneration is incompletely understood. Here, we show that pannexin 1 (Panx1), a cell membrane channel activated by caspases in dying cells, drives efficient epithelial regeneration after tissue injury by regulating injury-induced epithelial proliferation. Lung airway epithelial injury promotes the Panx1-dependent release of factors including ATP, from dying epithelial cells, which regulates macrophage phenotype after injury. This process, in turn, induces a reparative response in tissue macrophages that includes the induction of the soluble mitogen amphiregulin, which promotes injury-induced epithelial proliferation. Analysis of regenerating lung epithelium identified Panx1-dependent induction of Nras and Bcas2, both of which positively promoted epithelial proliferation and tissue regeneration in vivo. We also established that this role of Panx1 in boosting epithelial repair after injury is conserved between mouse lung and zebrafish tailfin. These data identify a Panx1-mediated communication circuit between epithelial cells and macrophages as a key step in promoting epithelial regeneration after injury.


Subject(s)
Connexins , Epithelial Cells , Nerve Tissue Proteins , Wounds and Injuries , Animals , Connexins/genetics , Connexins/metabolism , Epithelial Cells/cytology , Lung/metabolism , Mice , Neoplasm Proteins , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Zebrafish
9.
Diabetes Res Clin Pract ; 187: 109869, 2022 May.
Article in English | MEDLINE | ID: mdl-35395248

ABSTRACT

AIMS: Certain patients with Diabetes Mellitus (DM) have high risk for complications from COVID-19. We aimed to test the hypothesis that pre-existing diabetic retinopathy (DR), a microvascular disease, is a prognostic indicator for poor COVID-19 outcome in this heterogeneous population. METHODS: Seven databases (including MEDLINE) and grey literature were searched, identifying eligible studies using predetermined selection criteria. The Quality in Prognosis Studies (QUIPS) tool was used for quality assessment, followed by narrative synthesis of included studies. RESULTS: Eight cohort studies were identified. Three showed significant positive associations between DR and poor COVID-19 outcomes. The highest quality study, McGurnaghan, found increased risk of the combined outcome fatal or critical care unit (CCU)-treated COVID-19 with referable-grade DR (OR 1.672, 95% CI 1.38-2.03). Indirectly, four studies reported positive associations with microvascular disease and poorer prognosis. Variability between studies limited comparability. CONCLUSIONS: The current literature suggests an independent association between DR and poorer COVID-19 prognosis in patients with DM after controlling for key variables such as age. The use of standardised methodology in future studies would establish the predictive value of DR with greater confidence. Researchers should consider comparing the predictive value of DR and its severity, to other microvascular complications of DM.


Subject(s)
COVID-19 , Diabetes Mellitus , Diabetic Retinopathy , COVID-19/complications , COVID-19/epidemiology , Cohort Studies , Diabetic Retinopathy/epidemiology , Humans , Intensive Care Units , Prognosis
10.
Am J Respir Cell Mol Biol ; 66(2): 196-205, 2022 02.
Article in English | MEDLINE | ID: mdl-34710339

ABSTRACT

Immunopathology occurs in the lung and spleen in fatal coronavirus disease (COVID-19), involving monocytes/macrophages and plasma cells. Antiinflammatory therapy reduces mortality, but additional therapeutic targets are required. We aimed to gain mechanistic insight into COVID-19 immunopathology by targeted proteomic analysis of pulmonary and splenic tissues. Lung parenchymal and splenic tissue was obtained from 13 postmortem examinations of patients with fatal COVID-19. Control tissue was obtained from cancer resection samples (lung) and deceased organ donors (spleen). Protein was extracted from tissue by phenol extraction. Olink multiplex immunoassay panels were used for protein detection and quantification. Proteins with increased abundance in the lung included MCP-3, antiviral TRIM21, and prothrombotic TYMP. OSM and EN-RAGE/S100A12 abundance was correlated and associated with inflammation severity. Unsupervised clustering identified "early viral" and "late inflammatory" clusters with distinct protein abundance profiles, and differences in illness duration before death and presence of viral RNA. In the spleen, lymphocyte chemotactic factors and CD8A were decreased in abundance, and proapoptotic factors were increased. B-cell receptor signaling pathway components and macrophage colony stimulating factor (CSF-1) were also increased. Additional evidence for a subset of host factors (including DDX58, OSM, TYMP, IL-18, MCP-3, and CSF-1) was provided by overlap between 1) differential abundance in spleen and lung tissue; 2) meta-analysis of existing datasets; and 3) plasma proteomic data. This proteomic analysis of lung parenchymal and splenic tissue from fatal COVID-19 provides mechanistic insight into tissue antiviral responses, inflammation and disease stages, macrophage involvement, pulmonary thrombosis, splenic B-cell activation, and lymphocyte depletion.


Subject(s)
COVID-19/immunology , Gene Expression Regulation/immunology , Lung/immunology , SARS-CoV-2/immunology , Spleen/immunology , Aged , Aged, 80 and over , Autopsy , Female , Humans , Inflammation/immunology , Male , Proteomics
11.
Inflammation ; 45(2): 567-572, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34697723

ABSTRACT

The coronavirus SARS-CoV-2 contributes to morbidity and mortality mainly as a result of immune-pathology in the lungs. Recent data has shown multi-system involvement with widespread viral tropism. Here we present a detailed intestinal protein characterisation of SARS-Cov-2 entry molecules ACE2 and TMPRSS2 in patients with inflammatory bowel disease ([IBD]; ulcerative colitis [UC] and Crohn's disease [CD]) with age- and sex-matched non-IBD controls, and in those with fatal COVID-19 infection. In our dataset, ACE2 and TMPRSS2 displayed a membrane enterocyte staining in the ileum (due to presence of brush border/microvilli) in contrast to a cytoplasmic pattern in the colon. We also showed a high ACE2/low TMPRSS2 expression pattern in the ileum with a reverse trend in the colon. In UC, colonic ACE2 and TMPRSS2 are cytoplasmic in nature, with significantly higher ACE2 staining intensity compared to non-IBD controls. In inflamed and unaffected IBD mucosa, ileal and colonic enterocyte ACE2 and TMPRSS2 expressions are not modified in the histologic presence of inflammation. We observed immune cells within the lamina propria that expressed ACE2 and TMPRSS2, at higher frequencies in IBD when compared to non-IBD controls. These were identified as plasma cells with multiple myeloma oncogene 1/interferon regulatory factor 4 (MUM1/IRF4) expression. We further analysed the gut histology of six fatal COVID-19 cases, with no difference in colonic and ileal ACE2/TMRPSS2 staining (compared to non-IBD controls) and identified ACE2 + lamina propria plasma cells. Of interest, in this COVID-19 cohort, there was no histologic evidence gut inflammation despite known evidence of viral tropism within the enterocytes. Our data provides evidence for tissue expression of entry molecules ACE2 and TMPRSS2 including a close apposition to plasma cells - both pointing towards a role of the gut in the antecedent immune response to SARS-CoV-2 infection.


Subject(s)
COVID-19 , Colitis, Ulcerative , Inflammatory Bowel Diseases , Angiotensin-Converting Enzyme 2 , Humans , SARS-CoV-2 , Serine Endopeptidases
14.
Oncoimmunology ; 10(1): 1940675, 2021.
Article in English | MEDLINE | ID: mdl-34290905

ABSTRACT

The success of immune checkpoint therapy shows tumor-reactive T cells can eliminate cancer cells but are restrained by immunosuppression within the tumor micro-environment (TME). Cancer associated fibroblasts (CAFs) are the dominant stromal cell in the TME and co-localize with T cells in non-small cell lung cancer. We demonstrate the bidirectional nature of CAF/T cell interactions; T cells promote expression of co-inhibitory ligands, MHC molecules and CD73 on CAFs, increasing their production of IL-6 and eliciting production of IL-27. In turn CAFs upregulate co-inhibitory receptors on T cells including the ectonucleotidase CD39 promoting development of an exhausted but highly cytotoxic phenotype. Our results highlight the bidirectional interaction between T cells and CAFs in promoting components of the immunosuppressive CD39, CD73 adenosine pathway and demonstrate IL-27 production can be induced in CAF by activated T cells.


Subject(s)
5'-Nucleotidase , Cancer-Associated Fibroblasts , Carcinoma, Non-Small-Cell Lung , Interleukin-27 , Lung Neoplasms , T-Lymphocytes , Carcinoma, Non-Small-Cell Lung/genetics , Feedback , GPI-Linked Proteins , Humans , Ligands , Lung Neoplasms/genetics , Tumor Microenvironment/genetics
15.
J Pathol Clin Res ; 7(5): 471-481, 2021 09.
Article in English | MEDLINE | ID: mdl-34076968

ABSTRACT

Biopsy remains the gold-standard measure for staging liver disease, both to inform prognosis and to assess the response to a given treatment. Semiquantitative scores such as the Ishak fibrosis score are used for evaluation. These scores are utilised in clinical trials, with the US Food and Drug Administration mandating particular scores as inclusion criteria for participants and using the change in score as evidence of treatment efficacy. There is an urgent need for improved, quantitative assessment of liver biopsies to detect small incremental changes in liver architecture over the course of a clinical trial. Artificial intelligence (AI) methods have been proposed as a way to increase the amount of information extracted from a biopsy and to potentially remove bias introduced by manual scoring. We have trained and evaluated an AI tool for measuring the amount of scarring in sections of picrosirius red-stained liver. The AI methodology was compared with both manual scoring and widely available colour space thresholding. Four sequential sections from each case were stained on two separate occasions by two independent clinical laboratories using routine protocols to study the effect of inter- and intra-laboratory staining variation on these tools. Finally, we compared these methods to second harmonic generation (SHG) imaging, a stain-free quantitative measure of collagen. Although AI methods provided a modest improvement over simpler computer-assisted measures, staining variation both within and between laboratories had a dramatic effect on quantitation, with manual assignment of scar proportion being the most consistent. Manual assessment also most strongly correlated with collagen measured by SHG. In conclusion, results suggest that computational measures of liver scarring from stained sections are compromised by inter- and intra-laboratory staining. Stain-free quantitative measurement using SHG avoids staining-related variation and may prove more accurate in detecting small changes in scarring that may occur in therapeutic trials.


Subject(s)
Image Interpretation, Computer-Assisted/methods , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Staining and Labeling/methods , Artificial Intelligence , Azo Compounds , Biopsy , Collagen/analysis , Evaluation Studies as Topic , Humans , Image Processing, Computer-Assisted , Laboratories, Clinical , Microscopy , Observer Variation , Reproducibility of Results
16.
Open Forum Infect Dis ; 8(2): ofaa640, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33553478

ABSTRACT

Pulmonary microthrombosis and vasculitis occur in fatal coronavirus disease 2019. To determine whether these processes occur in other life-threatening respiratory virus infections, we identified autopsy studies of fatal influenza (n  =  455 patients), severe acute respiratory syndrome ([SARS] n  =  37), Middle East respiratory syndrome (n  =  2), adenovirus (n  =  34), and respiratory syncytial virus (n  =  30). Histological evidence of thrombosis was frequently present in adults with fatal influenza and SARS, with vasculitis also reported.

17.
Cells ; 10(2)2021 02 05.
Article in English | MEDLINE | ID: mdl-33562816

ABSTRACT

Respiratory diseases are frequently characterised by epithelial injury, airway inflammation, defective tissue repair, and airway remodelling. This may occur in a subacute or chronic context, such as asthma and chronic obstructive pulmonary disease, or occur acutely as in pathogen challenge and acute respiratory distress syndrome (ARDS). Despite the frequent challenge of lung homeostasis, not all pulmonary insults lead to disease. Traditionally thought of as a quiescent organ, emerging evidence highlights that the lung has significant capacity to respond to injury by repairing and replacing damaged cells. This occurs with the appropriate and timely resolution of inflammation and concurrent initiation of tissue repair programmes. Airway epithelial cells are key effectors in lung homeostasis and host defence; continual exposure to pathogens, toxins, and particulate matter challenge homeostasis, requiring robust defence and repair mechanisms. As such, the epithelium is critically involved in the return to homeostasis, orchestrating the resolution of inflammation and initiating tissue repair. This review examines the pivotal role of pulmonary airway epithelial cells in initiating and moderating tissue repair and restitution. We discuss emerging evidence of the interactions between airway epithelial cells and candidate stem or progenitor cells to initiate tissue repair as well as with cells of the innate and adaptive immune systems in driving successful tissue regeneration. Understanding the mechanisms of intercellular communication is rapidly increasing, and a major focus of this review includes the various mediators involved, including growth factors, extracellular vesicles, soluble lipid mediators, cytokines, and chemokines. Understanding these areas will ultimately identify potential cells, mediators, and interactions for therapeutic targeting.


Subject(s)
Epithelial Cells/metabolism , Inflammation/metabolism , Lung Injury/therapy , Humans , Wound Healing
18.
Methods Mol Biol ; 2241: 113-132, 2021.
Article in English | MEDLINE | ID: mdl-33486732

ABSTRACT

Eosinophil apoptosis (programmed cell death) plays an important role in several inflammatory and allergic conditions. Apoptosis triggers various mechanisms including activation of cysteine-aspartic proteases (caspases) and is characterized by morphological and biochemical changes. These include cellular condensation, nuclear fragmentation, increased mitochondrial permeability with loss of membrane potential, and exposure of phosphatidylserine on the cell membrane. A greater understanding of apoptotic mechanisms, subsequent phagocytosis (efferocytosis), and regulation of these processes is critical to understanding disease pathogenesis and development of potential novel therapeutic agents. Release of soluble factors and alterations to surface marker expression by eosinophils undergoing apoptosis aid them in signaling their presence to the immediate environment, and their subsequent recognition by phagocytic cells such as macrophages. Uptake of apoptotic cells usually suppresses inflammation by restricting proinflammatory responses and promoting anti-inflammatory and tissue repair responses. This, in turn, promotes resolution of inflammation. Defects in the apoptotic or efferocytosis mechanisms perpetuate inflammation, resulting in chronic inflammation and enhanced disease severity. This can be due to increased eosinophil life span or cell necrosis characterized by loss of cell membrane integrity and release of toxic intracellular mediators. In this chapter, we detail some of the key assays that are used to assess eosinophil apoptosis, as well as the intracellular signaling pathways involved and phagocytic clearance of these cells.


Subject(s)
Apoptosis/physiology , Eosinophils/cytology , Immunohistochemistry/methods , Phagocytosis/physiology , Annexin A5/chemistry , Apoptosis/immunology , Biological Transport , Caspases/metabolism , Eosinophils/physiology , Humans , Inflammation/metabolism , Macrophages/metabolism , Membrane Potentials/physiology , Microscopy/methods , Microscopy, Electron/methods , Mitochondria/metabolism , Phagocytes/metabolism , Phagocytes/physiology , Phagocytosis/immunology , Propidium/chemistry , Signal Transduction
19.
Am J Respir Crit Care Med ; 203(2): 192-201, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33217246

ABSTRACT

Rationale: In life-threatening coronavirus disease (COVID-19), corticosteroids reduce mortality, suggesting that immune responses have a causal role in death. Whether this deleterious inflammation is primarily a direct reaction to the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or an independent immunopathologic process is unknown.Objectives: To determine SARS-CoV-2 organotropism and organ-specific inflammatory responses and the relationships among viral presence, inflammation, and organ injury.Methods: Tissue was acquired from 11 detailed postmortem examinations. SARS-CoV-2 organotropism was mapped by using multiplex PCR and sequencing, with cellular resolution achieved by in situ viral S (spike) protein detection. Histologic evidence of inflammation was quantified from 37 anatomic sites, and the pulmonary immune response was characterized by using multiplex immunofluorescence.Measurements and Main Results: Multiple aberrant immune responses in fatal COVID-19 were found, principally involving the lung and reticuloendothelial system, and these were not clearly topologically associated with the virus. Inflammation and organ dysfunction did not map to the tissue and cellular distribution of SARS-CoV-2 RNA and protein between or within tissues. An arteritis was identified in the lung, which was further characterized as a monocyte/myeloid-rich vasculitis, and occurred together with an influx of macrophage/monocyte-lineage cells into the pulmonary parenchyma. In addition, stereotyped abnormal reticuloendothelial responses, including excessive reactive plasmacytosis and iron-laden macrophages, were present and dissociated from viral presence in lymphoid tissues.Conclusions: Tissue-specific immunopathology occurs in COVID-19, implicating a significant component of the immune-mediated, virus-independent immunopathologic process as a primary mechanism in severe disease. Our data highlight novel immunopathologic mechanisms and validate ongoing and future efforts to therapeutically target aberrant macrophage and plasma-cell responses as well as promote pathogen tolerance in COVID-19.


Subject(s)
COVID-19/immunology , Inflammation/virology , Lung/immunology , Multiple Organ Failure/virology , SARS-CoV-2/immunology , Aged , Aged, 80 and over , Autopsy , Biopsy , COVID-19/pathology , COVID-19/virology , COVID-19 Nucleic Acid Testing , Female , Fluorescent Antibody Technique , Humans , Inflammation/immunology , Inflammation/pathology , Lung/pathology , Lung/virology , Male , Multiple Organ Failure/immunology , Multiple Organ Failure/pathology , SARS-CoV-2/pathogenicity , Severity of Illness Index
20.
J Inflamm (Lond) ; 17(1): 34, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33292269

ABSTRACT

BACKGROUND: Neutrophils rapidly respond to and clear infection from tissues, but can also induce tissue damage through excessive degranulation, when acute inflammation proceeds unchecked. A number of key neutrophil functions, including adhesion-dependent degranulation, are controlled by src family kinases. Dasatinib is a potent src inhibitor used in treating patients with chronic myeloid leukaemia and treatment-resistant acute lymphoblastic leukaemia. We hypothesized that dasatinib would attenuate acute inflammation by inhibiting neutrophil recruitment, degranulation and endothelial cell injury, without impairing bacterial clearance, in a murine model of bacteria-induced acute lung injury. C57BL/6 mice received intratracheal Escherichia coli, and were treated with intraperitoneal dasatinib or control. Bacterial clearance, lung injury, and markers of neutrophil recruitment and degranulation were measured. Separately, human blood neutrophils were exposed to dasatinib or control, and the effects on a range of neutrophil functions assessed. RESULTS: Dasatinib was associated with a dose-dependent significant increase in E. coli in the mouse lung, accompanied by impairment of organ function, reflected in significantly increased protein leak across the alveolar-capillary membrane. However, the number of neutrophils entering the lung was unaffected, suggesting that dasatinib impairs neutrophil function independent of migration. Dasatinib did not cause direct toxicity to human neutrophils, but led to significant reductions in phagocytosis of E. coli, adhesion, chemotaxis, generation of superoxide anion and degranulation of primary and secondary granules. However, no biologically important effect of dasatinib on neutrophil degranulation was observed in mice. CONCLUSIONS: Contrary to our starting hypothesis, src kinase inhibition with dasatinib had a detrimental effect on bacterial clearance in the mouse lung and therefore does not represent an attractive therapeutic strategy to treat primary infective lung inflammation. Data from human neutrophils suggest that dasatanib has inhibitory effects on a range of neutrophil functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...