Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Explor Res Clin Soc Pharm ; 12: 100378, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094713

ABSTRACT

Medicines can be taken by various routes of administration. These can impact the effects and perceptions of medicines. The literature about individuals' preferences for and perceptions of the different routes of administration is sparse, but indicates a potential influence of culture. Our aim was to determine: (i) any association between one's culture and one's preferred route of medicine administration and (ii) individual perceptions of pain, efficacy, speed of action and acceptability when medicines are swallowed or placed in the mouth, under the tongue, in the nose, eye, ear, lungs, rectum, vagina, on the skin, or areinjected. A cross-sectional, questionnaire-based survey of adults was conducted in 21 countries and regions of the world, namely, Tunisia, Ghana, Nigeria, Turkey, Ethiopia, Lebanon, Malta, Brazil, Great Britain, United States, India, Serbia, Romania, Portugal, France, Netherlands, Japan, South Korea, Hong Kong, mainland China and Estonia, using the Inglehart-Welzel cultural map to ensure coverage across all cultures. Participants scored the pain/discomfort, efficacy, speed of onset and acceptability of the different routes of medicine administration and stated their preferred route. Demographic information was collected. A total of 4435 participants took part in the survey. Overall, the oral route was the most preferred route, followed by injection, while the rectal route was the least preferred. While the oral route was the most preferred in all cultures, the percentage of participants selecting this route varied, from 98% in Protestant Europe to 50% in the African-Islamic culture. A multinomial logistic regression model revealed a number of predictors for the preferred route. Injections were favoured in the Baltic, South Asia, Latin America and African-Islamic cultures while dermal administration was favoured in Catholic Europe, Baltic and Latin America cultures. A marked association was found between culture and the preference for, and perceptions of the different routes by which medicines are taken. This applied to even the least favoured routes (vaginal and rectal). Only women were asked about the vaginal route, and our data shows that the vaginal route was slightly more popular than the rectal one.

2.
Trop Med Infect Dis ; 8(10)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37888590

ABSTRACT

Neglected tropical diseases (NTDs) are indeed a group of illnesses (Table 1) affecting hundreds of millions of individuals living in tropical and sub-tropical geographical regions of the globe, particularly in socioeconomic vulnerability areas where access to adequate sanitation, a clean water supply, and healthcare is limited [...].

3.
Foods ; 12(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37444263

ABSTRACT

The present work aimed to obtain bioproducts from Passiflora cincinnata seeds, the Brazilian Caatinga passion fruit, as well as to determine their physical, chemical and biological properties. The seeds were pressed in a continuous press to obtain the oil, which showed an oxidative stability of 5.37 h and a fatty profile rich in linoleic acid. The defatted seeds were evaluated for the recovery of antioxidant compounds by a central rotation experimental design, varying temperature (32-74 °C), ethanol (13-97%) and solid-liquid ratio (1:10-1:60 m/v). The best operational condition (74 °C, 58% ethanol, 1:48) yielded an extract composed mainly of lignans, which showed antioxidant capacity and antimicrobial activity against Gram-positive and Gram-negative bacteria. The microencapsulation of linoleic acid-rich oil through spray drying has proven to be an effective method for protecting the oil. Furthermore, the addition of the antioxidant extract to the formulation increased the oxidative stability of the product to 30% (6.97 h), compared to microencapsulated oil without the addition of the antioxidant extract (5.27 h). The microparticles also exhibited favorable technological characteristics, such as low hygroscopicity and high water solubility. Thus, it was possible to obtain three bioproducts from the Brazilian Caatinga passion fruit seeds: the oil rich in linoleic acid (an essential fatty acid), antioxidant extract from the defatted seeds and the oil microparticles added from the antioxidant extract.

4.
Medicina (Kaunas) ; 59(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37109701

ABSTRACT

Background and Objectives: Vulvovaginal candidiasis (VVC) is a mucous membrane infection, with an increased rate of antifungal resistance of Candida species. In this study, the in vitro efficacy of farnesol alone or in combination with traditional antifungals was assessed against resistant Candida strains recovered from women with VVC. Materials and Methods: Eighty Candida isolates were identified by multiplex polymerase chain reaction (PCR), and the antifungal susceptibility to amphotericin B (AMB), fluconazole (FLU), itraconazole (ITZ), voriconazole (VOR), clotrimazole (CTZ), and farnesol was tested by the standard microdilution method. The combinations of farnesol with each antifungal were calculated based on the fractional inhibitory concentration index (FICI). Result: Candida glabrata was the predominant species (48.75%) isolated from vaginal discharges, followed by C. albicans (43.75%), C. parapsilosis (3.75%), a mixed infection of C. albicans and C. glabrata (2.5%) and C. albicans and C. parapsilosis (1%). C. albicans and C. glabrata isolates had lower susceptibility to FLU (31.4% and 23.0%, respectively) and CTZ (37.1% and 33.3%, respectively). Importantly, there was "synergism" between farnesol-FLU and farnesol-ITZ against C. albicans and C. parapsilosis (FICI = 0.5 and 0.35, respectively), reverting the original azole-resistant profile. Conclusion: These findings indicate that farnesol can revert the resistance profile of azole by enhancing the activity of FLU and ITZ in resistant Candida isolates, which is a clinically promising result.


Subject(s)
Antifungal Agents , Candidiasis, Vulvovaginal , Female , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida , Farnesol/pharmacology , Farnesol/therapeutic use , Fluconazole/pharmacology , Fluconazole/therapeutic use , Candidiasis, Vulvovaginal/drug therapy , Candidiasis, Vulvovaginal/microbiology , Itraconazole/pharmacology , Itraconazole/therapeutic use , Candida albicans , Azoles/pharmacology
5.
Curr Protein Pept Sci ; 24(4): 307-328, 2023.
Article in English | MEDLINE | ID: mdl-36876838

ABSTRACT

This article provides a comprehensive review of several subclasses of metallo-type peptidases expressed by the main clinically relevant protozoa, including Plasmodium spp., Toxoplasma gondii, Cryptosporidium spp., Leishmania spp., Trypanosoma spp., Entamoeba histolytica, Giardia duodenalis, and Trichomonas vaginalis. These species comprise a diverse group of unicellular eukaryotic microorganisms responsible for widespread and severe human infections. Metallopeptidases, defined as hydrolases with activity mediated by divalent metal cation, play important roles in the induction and maintenance of parasitic infections. In this context, metallopeptidases can be considered veritable virulence factors in protozoa with direct/indirect participation in several key pathophysiological processes, including adherence, invasion, evasion, excystation, central metabolism, nutrition, growth, proliferation, and differentiation. Indeed, metallopeptidases have become an important and valid target to search for new compounds with chemotherapeutic purposes. The present review aims to gather updates regarding metallopeptidase subclasses, exploring their participation in protozoa virulence as well as investigating the similarity of peptidase sequences through bioinformatic techniques in order to discover clusters of great relevance for the development of new broad antiparasitic molecules.


Subject(s)
Cryptosporidiosis , Cryptosporidium , Humans , Virulence , Eukaryota , Metalloproteases
6.
J Fungi (Basel) ; 9(3)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36983553

ABSTRACT

Histoplasmosis is a frequent mycosis in people living with HIV/AIDS and other immunocompromised hosts. Histoplasmosis has high rates of mortality in these patients if treatment is unsuccessful. Itraconazole and amphotericin B are used to treat histoplasmosis; however, both antifungals have potentially severe pharmacokinetic drug interactions and toxicity. The present study determined the minimal inhibitory and fungicidal concentrations of mebendazole, a drug present in the NIH Clinical Collection, to establish whether it has fungicidal or fungistatic activity against Histoplasma capsulatum. Protein extracts from H. capsulatum yeasts, treated or not with mebendazole, were analyzed by proteomics to understand the metabolic changes driven by this benzimidazole. Mebendazole inhibited the growth of 10 H. capsulatum strains, presenting minimal inhibitory concentrations ranging from 5.0 to 0.08 µM. Proteomics revealed 30 and 18 proteins exclusively detected in untreated and mebendazole-treated H. capsulatum yeast cells, respectively. Proteins related to the tricarboxylic acid cycle, cytoskeleton, and ribosomes were highly abundant in untreated cells. Proteins related to the nitrogen, sulfur, and pyrimidine metabolisms were enriched in mebendazole-treated cells. Furthermore, mebendazole was able to inhibit the oxidative metabolism, disrupt the cytoskeleton, and decrease ribosomal proteins in H. capsulatum. These results suggest mebendazole as a drug to be repurposed for histoplasmosis treatment.

7.
Braz J Microbiol ; 53(4): 1969-1977, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36224461

ABSTRACT

The present study aimed to compare the oral Candida rate between infected and uninfected children with the human immunodeficiency virus (HIV), as well as analyze the association between Candida spp. and predisposing factors of colonization, like oral biofilm index, caries experience, and laboratory markers of AIDS progression. A cross-sectional study was employed. Candida species were identified and quantified from saliva samples of 50 HIV-infected and 50 uninfected children. Biofilm index and decayed, missing, and filled teeth (dmft/DMFT) indices were assessed by oral clinical examinations. Additionally, CD4+ T lymphocyte count and viral load were obtained from medical records of the HIV-infected children. Candida species were cultured from 74% of the HIV-infected children and 46% of uninfected ones (p = 0.0076). Candida albicans and Candida parapsilosis were the most frequently isolated species in both studied groups. The isolation of Candida species was significantly higher in HIV-infected children with CD4 ≤ 15% (p = 0.0146); it had influence of mature oral biofilm and the caries index (dmft + DMFT ≥ 8) (p < 0.05) and was associated with the plasma viral load. The present data show that the HIV infection, oral biofilm index, caries experience, and laboratory markers of AIDS progression exert an influence on the prevalence of oral Candida in children.


Subject(s)
Acquired Immunodeficiency Syndrome , Dental Caries , HIV Infections , Child , Humans , HIV Infections/complications , Candida , Cross-Sectional Studies , Acquired Immunodeficiency Syndrome/complications , Dental Caries Susceptibility , Biofilms , Biomarkers , Disease Progression , Dental Caries/complications
9.
Curr Top Med Chem ; 22(16): 1297-1305, 2022.
Article in English | MEDLINE | ID: mdl-35619311

ABSTRACT

The emergence of the pathogen Candida auris is a real concern worldwide, especially due to its multidrug resistance profile, besides the difficulties in establishing the correct identification by conventional laboratory methods and its capacity of causing outbreaks in healthcare settings. The limited arsenal of available antifungal drugs, coupled with the lack of momentum for the development of new reagents, represent a challenge in the management of such a pathogen. In this perspective, we have focused on discussing new, promising treatment options for C. auris infections. These novel drugs include an antifungal agent already approved for medical use in the United States of America, compounds that are already in clinical trials and those with potential for repurposing use against this important fungal pathogen.


Subject(s)
Candida , Candidiasis , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Candida auris , Candidiasis/drug therapy , Candidiasis/microbiology , Humans , Microbial Sensitivity Tests , Prospective Studies , United States
10.
Mem Inst Oswaldo Cruz ; 117: e220017, 2022.
Article in English | MEDLINE | ID: mdl-35352772

ABSTRACT

The treatment for tropical neglected diseases, such as Chagas disease (CD) and leishmaniasis, is extremely limited to a handful of drugs that suffer from unacceptable toxicity, tough administration routes, like parenteral, and increasing treatment failures due to the parasite resistance. Consequently, there is urgency for the development of new therapeutic options to treat such diseases. Since peptidases from these parasites are responsible for crucial functions in their biology, these molecules have been explored as alternative targets. In this context, a myriad of proteolytic inhibitors has been developed against calcium-dependent cysteine-type peptidases, collectively called calpains, which are implicated in several human pathophysiological diseases. These molecules are highly expanded in the genome of trypanosomatids and they have been reported participating in several parasite biological processes. In the present perspective, we discuss our almost two decades of experience employing the calpain inhibitors as an interesting shortcut to a possible repurpose strategy to treat CD and leishmaniasis.


Subject(s)
Chagas Disease , Leishmaniasis , Chagas Disease/drug therapy , Glycoproteins/therapeutic use , Humans , Leishmaniasis/drug therapy , Protease Inhibitors/pharmacology , Protease Inhibitors/therapeutic use
11.
Front Cell Infect Microbiol ; 12: 804707, 2022.
Article in English | MEDLINE | ID: mdl-35242719

ABSTRACT

The Trypanosomatidae family encompasses unicellular flagellates and obligate parasites of invertebrates, vertebrates, and plants. Trypanosomatids are traditionally divided into heteroxenous, characterized by the alternation of the life cycle between an insect vector and a plant or a vertebrate host, including humans being responsible for severe diseases; and monoxenous, which are presumably unique parasites of invertebrate hosts. Interestingly, studies reporting the occurrence of these monoxenous trypanosomatids in humans have been gradually increasing, either associated with Leishmania co-infection, or supposedly alone either in immunocompromised or even more sporadically in immunocompetent hosts. This review summarizes the first reports that raised the hypothesis that monoxenous trypanosomatids could be found in vertebrate hosts till the most current reports on the occurrence of Crithidia spp. alone in immunocompetent human patients.


Subject(s)
Leishmania , Leishmaniasis , Animals , Humans , Leishmania/genetics , Life Cycle Stages , Plants , Vertebrates
12.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35056112

ABSTRACT

Recently, the well-known geographically wide distribution of sporotrichosis in Brazil, combined with the difficulties of effective domestic feline treatment, has emphasized the pressing need for new therapeutic alternatives. This work considers a range of synthetic derivatives as potential antifungals against Sporothrix brasiliensis isolated from cats from the hyperendemic Brazilian region. Six S. brasiliensis isolates from the sporotrichotic lesions of itraconazole responsive or non-responsive domestic cats were studied. The minimum inhibitory concentrations (MICs) of three novel hydrazone derivatives and eleven novel quinone derivatives were determined using the broth microdilution method (M38-A2). In silico tests were also used to predict the pharmacological profile and toxicity parameters of these synthetic derivatives. MICs and MFCs ranged from 1 to >128 µg/mL. The ADMET computational analysis failed to detect toxicity while a good pharmacological predictive profile, with parameters similar to itraconazole, was obtained. Three hydrazone derivatives were particularly promising candidates as antifungal agents against itraconazole-resistant S. brasiliensis from the Brazilian hyperendemic region. Since sporotrichosis is a neglected zoonosis currently spreading in Latin America, particularly in Brazil, the present data can contribute to its future control by alternative antifungal drug design against S. brasiliensis, the most virulent and prevalent species of the hyperendemic context.

13.
Molecules ; 27(2)2022 Jan 09.
Article in English | MEDLINE | ID: mdl-35056726

ABSTRACT

Herein, the extraction of bioactive compounds from umbu fruit peel was optimized using thermal-assisted solid-liquid extraction. In parallel, antioxidant, antimicrobial, and inhibitory effects against α-amylase of optimized extract were also evaluated. The combination of operational conditions including the temperature (32-74 °C), ethanol concentration (13-97%), and solid/liquid ratio (1:10-1:60; w/v) was employed using a rotational central composite design for optimization. The extracts were evaluated for total phenolic compounds (TPC), total flavonoid compounds (TFC) and antioxidant capacity by ABTS•+, DPPH• and FRAP assays. The bioactive profile of the optimized extract was obtained by ultra-performance liquid chromatography coupled to quadrupole/time-of-flight mass spectrometry in electrospray ionization in both negative and positive modes. The statistically evaluated results showed that the optimal operational conditions for the recovery of bioactive compounds from umbu fruit peel included 74 °C, 37% ethanol, and a solid-liquid ratio of 1:38. Under these conditions, the obtained values were 1985 mg GAE/100 g, 1364 mg RE/100 g, 122 µmol TE/g, 174 µmol/TE g and 468 µmol Fe2+/g for TPC, TFC, ABTS•+, DPPH•, and FRAP assays, respectively. In addition, the optimized extract was effective against Gram-positive and Gram-negative bacteria (MBC ranged from 0.060 to 0.24 mg GAE/mL), as well as it was effective to inhibit α-amylase (IC50 value of 0.076 mg GAE/mL). The optimized extract showed to be mainly constituted by phenolic acids and flavonoids.


Subject(s)
Fruit
14.
Materials (Basel) ; 15(2)2022 Jan 06.
Article in English | MEDLINE | ID: mdl-35057143

ABSTRACT

The wide application of additive manufacturing in dentistry implies the further investigation into oral micro-organism adhesion and biofilm formation on vat-photopolymerization (VP) dental resins. The surface characteristics and microbiological analysis of a VP dental resin, printed at resolutions of 50 µm (EG-50) and 100 µm (EG-100), were evaluated against an auto-polymerizing acrylic resin (CG). Samples were evaluated using a scanning electron microscope, a scanning white-light interferometer, and analyzed for Candida albicans (CA) and Streptococcus mutans (SM) biofilm, as well as antifungal and antimicrobial activity. EG-50 and EG-100 exhibited more irregular surfaces and statistically higher mean (Ra) and root-mean-square (rms) roughness (EG-50-Ra: 2.96 ± 0.32 µm; rms: 4.05 ± 0.43 µm/EG-100-Ra: 3.76 ± 0.58 µm; rms: 4.79 ± 0.74 µm) compared to the CG (Ra: 0.52 ± 0.36 µm; rms: 0.84 ± 0.54 µm) (p < 0.05). The biomass and extracellular matrix production by CA and SM and the metabolic activity of SM were significantly decreased in EG-50 and EG-100 compared to CG (p < 0.05). CA and SM growth was inhibited by the pure unpolymerized VP resin (48 h). EG-50 and EG-100 recorded a greater irregularity, higher surface roughness, and decreased CA and SM biofilm formation over the CG.

15.
J Biol Inorg Chem ; 27(1): 201-213, 2022 02.
Article in English | MEDLINE | ID: mdl-35006347

ABSTRACT

Tackling microbial resistance requires continuous efforts for the development of new molecules with novel mechanisms of action and potent antimicrobial activity. Our group has previously identified metal-based compounds, [Ag(1,10-phenanthroline-5,6-dione)2]ClO4 (Ag-phendione) and [Cu(1,10-phenanthroline-5,6-dione)3](ClO4)2.4H2O (Cu-phendione), with efficient antimicrobial action against multidrug-resistant species. Herein, we investigated the ability of Ag-phendione and Cu-phendione to bind with double-stranded DNA using a combination of in silico and in vitro approaches. Molecular docking revealed that both phendione derivatives can interact with the DNA by hydrogen bonding, hydrophobic and electrostatic interactions. Cu-phendione exhibited the highest binding affinity to either major (- 7.9 kcal/mol) or minor (- 7.2 kcal/mol) DNA grooves. In vitro competitive quenching assays involving duplex DNA with Hoechst 33258 or ethidium bromide demonstrated that Ag-phendione and Cu-phendione preferentially bind DNA in the minor grooves. The competitive ethidium bromide displacement technique revealed Cu-phendione has a higher binding affinity to DNA (Kapp = 2.55 × 106 M-1) than Ag-phendione (Kapp = 2.79 × 105 M-1) and phendione (Kapp = 1.33 × 105 M-1). Cu-phendione induced topoisomerase I-mediated DNA relaxation of supercoiled plasmid DNA. Moreover, Cu-phendione was able to induce oxidative DNA injuries with the addition of free radical scavengers inhibiting DNA damage. Ag-phendione and Cu-phendione avidly displaced propidium iodide bound to DNA in permeabilized Pseudomonas aeruginosa cells in a dose-dependent manner as judged by flow cytometry. The treatment of P. aeruginosa with bactericidal concentrations of Cu-phendione (15 µM) induced DNA fragmentation as visualized by either agarose gel or TUNEL assays. Altogether, these results highlight a possible novel DNA-targeted mechanism by which phendione-containing complexes, in part, elicit toxicity toward the multidrug-resistant pathogen P. aeruginosa.


Subject(s)
Coordination Complexes , Pseudomonas aeruginosa , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Copper/chemistry , Copper/pharmacology , DNA/chemistry , Molecular Docking Simulation , Phenanthrolines/chemistry , Phenanthrolines/pharmacology , Silver/pharmacology
16.
Mem. Inst. Oswaldo Cruz ; 117: e220017, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1365156

ABSTRACT

The treatment for tropical neglected diseases, such as Chagas disease (CD) and leishmaniasis, is extremely limited to a handful of drugs that suffer from unacceptable toxicity, tough administration routes, like parenteral, and increasing treatment failures due to the parasite resistance. Consequently, there is urgency for the development of new therapeutic options to treat such diseases. Since peptidases from these parasites are responsible for crucial functions in their biology, these molecules have been explored as alternative targets. In this context, a myriad of proteolytic inhibitors has been developed against calcium-dependent cysteine-type peptidases, collectively called calpains, which are implicated in several human pathophysiological diseases. These molecules are highly expanded in the genome of trypanosomatids and they have been reported participating in several parasite biological processes. In the present perspective, we discuss our almost two decades of experience employing the calpain inhibitors as an interesting shortcut to a possible repurpose strategy to treat CD and leishmaniasis.

18.
Curr Top Med Chem ; 21(16): 1429-1438, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34727849

ABSTRACT

As a part of the efforts to quickly develop pharmaceutical treatments for COVID-19 through repurposing existing drugs, some researchers around the world have combined the recently released crystal structure of SARS-CoV-2 Mpro in complex with a covalently bonded inhibitor with virtual screening procedures employing molecular docking approaches. In this context, protease inhibitors (PIs) clinically available and currently used to treat infectious diseases, particularly viral ones, are relevant sources of promising drug candidates to inhibit the SARS-CoV-2 Mpro, a key viral enzyme involved in crucial events during its life cycle. In the present perspective, we summarized the published studies showing the promising use of HIV and HCV PIs as potential repurposing drugs against the SARS-CoV-2 Mpro.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Coronavirus M Proteins/antagonists & inhibitors , Drug Repositioning , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , Antiviral Agents/chemistry , Binding Sites , COVID-19/virology , Coronavirus M Proteins/chemistry , Coronavirus M Proteins/genetics , Coronavirus M Proteins/metabolism , Humans , Kinetics , Models, Molecular , Molecular Targeted Therapy , Protease Inhibitors/chemistry , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Randomized Controlled Trials as Topic , SARS-CoV-2/enzymology , SARS-CoV-2/genetics , Thermodynamics
19.
Curr Top Med Chem ; 21(11): 929-936, 2021.
Article in English | MEDLINE | ID: mdl-34126900

ABSTRACT

The COVID-19 pandemic turned the SARS-CoV-2 into the main target of scientific research all around the world. Many advances have already been made, but there is still a long way to go to solve the molecular mechanisms related to the process of the SARS-CoV-2 infection, as well as the particularities of the disease, its course and the complex host-pathogen relationships. However, a lot has been theorized and associated with COVID-19, like the worst prognosis of the disease among individuals with some comorbidities, like diabetes mellitus. In this perspective, diabetic patients are repeatedly associated with more severe cases of COVID-19 when compared to non-diabetic patients. Even though ACE2 (angiotensin-converting enzyme 2) was recognized as the host cell receptor for both binding and entering of SARS-CoV-2 particles, it was also pointed out that this enzyme plays an important protective role against pulmonary damage. Therefore, paradoxically as it may seem, the low baseline level of this receptor in diabetics is directly linked to a more expressive loss of ACE2 protective effect, which could be one of the possible factors for the worst prognosis of COVID-19. Still, COVID-19 may also have a diabetogenic effect. From this point of view, the main topics that will be highlighted are (i) the mechanism of the viral entry, with special attention to the cellular receptor (ACE2) and the viral binding protein (spike), (ii) the relationship among the renin-angiotensin system, the infection process and the patients' prognosis, (iii) the glucose control and the medicines used in this event, and (iv) a brief analysis on diabetes triggered by COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/complications , Diabetes Complications/metabolism , COVID-19/metabolism , COVID-19/virology , Humans , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...