Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 27(5)2022 Mar 06.
Article in English | MEDLINE | ID: mdl-35268819

ABSTRACT

Dysidazirine carboxylic acid (1) was isolated from the lipophilic extract of a collection of the benthic marine cyanobacterium Caldora sp. from reefs near Fort Lauderdale, Florida. The planar structure of this new compound was determined by spectroscopic methods and comparisons between HRMS and NMR data with its reported methyl ester. The absolute configuration of the single chiral center was determined by the conversion of 1 to the methyl ester and the comparison of its specific rotation data with the two known methyl ester isomers, 2 and 3. Molecular sequencing with 16S rDNA indicated that this cyanobacterium differs from Caldora penicillata (Oscillatoriales) and represents a previously undocumented and novel Caldora species. Dysidazirine (2) showed weak cytotoxicity against HCT116 colorectal cancer cells (IC50 9.1 µM), while dysidazirine carboxylic acid (1) was non-cytotoxic. Similar cell viability patterns were observed in RAW264.7 cells with dysidazirine only (2), displaying cytotoxicity at the highest concentration tested (50 µM). The non-cytotoxic dysidazirine carboxylic acid (1) demonstrated anti-inflammatory activity in RAW264.7 cells stimulated with LPS. After 24 h, 1 inhibited the production of NO by almost 50% at 50 µM, without inducing cytotoxicity. Compound 1 rapidly decreased gene expression of the pro-inflammatory gene iNOS after 3 h post-LPS treatment and in a dose-dependent manner (IC50 ~1 µM); the downregulation of iNOS persisted at least until 12 h.


Subject(s)
Azirines , Carboxylic Acids , Anti-Inflammatory Agents/pharmacology , Carboxylic Acids/pharmacology , Florida , Humans , Molecular Structure
2.
J Nat Prod ; 85(3): 581-589, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35167289

ABSTRACT

Our ongoing efforts to explore the chemical space associated with marine cyanobacteria from coral reefs of Guam have yielded two new members of the anaenamide family of natural products, anaenamides C (3) and D (4). These compounds were isolated from a novel Hormoscilla sp. (VPG16-58). Our phylogenetic profiling (16S rDNA) of this cyanobacterium indicated that VPG16-58 is taxonomically distinct from the previously reported producer of the anaephenes, VPG16-59 (Hormoscilla sp.), and other previously documented species of the genus Hormoscilla. The planar structures of 3 and 4 were determined via spectroscopic methods, and absolute configurations of the α-hydroxy acids were assigned by enantioselective HPLC analysis. To address the requirement for sufficient material for testing, we first adapted our published linear synthetic approach for 1 and 2 to generate anaenoic acid (7), which served as a point for diversification, providing the primary amides 3 and 4 from synthetic intermediates 5 and 6, respectively. The compounds were then tested for effects on HCT116 colon cancer cell viability and in an ARE-luciferase reporter gene assay for Nrf2 modulation using HEK293 human embryonic kidney cells. Our findings indicate that, in contrast to cytotoxic methyl esters 1 and 2, the primary amides 3 and 4 activate the Nrf2 pathway at noncytotoxic concentrations. Overall, our data suggest that the anaenamide scaffold is tunable to produce differential biological outcomes.


Subject(s)
Cyanobacteria , NF-E2-Related Factor 2 , Amides/pharmacology , Cyanobacteria/chemistry , HEK293 Cells , Humans , Phylogeny
3.
J Nat Prod ; 83(6): 2030-2035, 2020 06 26.
Article in English | MEDLINE | ID: mdl-32463692

ABSTRACT

A new, cyclic carbonate eudesmane-type sesquiterpene, eudesmacarbonate (1), was isolated from marine filamentous cyanobacterial mats associated with apparent ingestion-related intoxications of captive bottlenose dolphins in the Florida Keys. Sequencing of 16S rDNA revealed that mats were composed of closely related Oscillatoriacean species including a previously undocumented species of Neolyngbya. The structure of 1 was elucidated by (+)-HRESIMS, 1D and 2D NMR, single-crystal X-ray diffraction, and vibrational circular dichroism data. Toxicity of 1 was assessed in the zebrafish embryo/larval model, and 1 was found to exhibit effects qualitatively similar to those observed for the known neurotoxin brevetoxin-2 and consistent with neurobehavioral impairment.


Subject(s)
Cyanobacteria/chemistry , Neurotoxicity Syndromes/psychology , Neurotoxins/toxicity , Sesquiterpenes, Eudesmane/toxicity , Sesquiterpenes/pharmacology , Animals , Behavior, Animal/drug effects , Embryo, Nonmammalian , Florida , Larva , Magnetic Resonance Spectroscopy , Molecular Structure , X-Ray Diffraction , Zebrafish
4.
Carbohydr Polym ; 153: 169-175, 2016 Nov 20.
Article in English | MEDLINE | ID: mdl-27561484

ABSTRACT

The stability of perfluorinated microvesicles is mainly determined by the presence of interfacial materials and their ability to hinder the gas component diffusibility into the bloodstream. The goal of this study is to increase the persistence of the gaseous-core by introducing chitosan-coated 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) microvesicles, reducing gas diffusion from microvesicles, and increasing for a long time ultrasonic signals. Our hypothesis was based on the irreversible adhesion of chitosan towards DSPC head groups observed in thin-films models. This affinity enhanced the stabilization of gaseous-core microvesicles, in which the polysaccharide effectively reduced the phospholipid phase transition enthalpy from 383±5.5Jmg(-1) for plain to 150±9.7Jmg(-1) for chitosan-coated microvesicles, providing a more stable structure that diminished the gaseous component lost and provided the persistence of intense (19)F-NMR signals after 48h, twice as long compared to plain samples. As a result, stronger and long-lasting ultrasonic signals were produced by the more stable chitosan-containing microvesicles, thus, presenting great potential to increase the diagnostic and therapeutic applications of perfluorocarbon carries.


Subject(s)
Chitosan/chemistry , Contrast Media/chemistry , Fluorocarbons/chemistry , Microbubbles , Phosphatidylcholines/chemistry , Phospholipids/chemistry , Solubility , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...