Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(22): 12459-12468, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771934

ABSTRACT

A series of 19 novel eugenol derivatives containing a 1,2,3-triazole moiety was synthesized via a two-step process, with the key step being a copper(I)-catalyzed azide-alkyne cycloaddition reaction. The compounds were assessed for their antifungal activities against Colletotrichum gloeosporioides, the causative agent of papaya anthracnose. Triazoles 2k, 2m, 2l, and 2n, at 100 ppm, were the most effective, reducing mycelial growth by 88.3, 85.5, 82.4, and 81.4%, respectively. Molecular docking calculations allowed us to elucidate the binding mode of these derivatives in the catalytic pocket of C. gloeosporioides CYP51. The best-docked compounds bind closely to the heme cofactor and within the channel access of the lanosterol (LAN) substrate, with crucial interactions involving residues Tyr102, Ile355, Met485, and Phe486. From such studies, the antifungal activity is likely attributed to the prevention of substrate LAN entry by the 1,2,3-triazole derivatives. The triazoles derived from natural eugenol represent a novel lead in the search for environmentally safe agents for controlling C. gloeosporioides.


Subject(s)
Carica , Colletotrichum , Eugenol , Fungicides, Industrial , Molecular Docking Simulation , Plant Diseases , Triazoles , Colletotrichum/drug effects , Eugenol/pharmacology , Eugenol/chemistry , Carica/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Triazoles/chemistry , Triazoles/pharmacology , Triazoles/chemical synthesis , Plant Diseases/microbiology , Plant Diseases/prevention & control , Structure-Activity Relationship , Drug Design , Fungal Proteins/chemistry , Molecular Structure
2.
J Am Soc Mass Spectrom ; 32(4): 946-955, 2021 Apr 07.
Article in English | MEDLINE | ID: mdl-33715356

ABSTRACT

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) can determine the chemical identity and spatial distribution of several molecules in a single analysis, conserving its natural histology. However, there are no specific studies on the spatial distribution of alkaloids in Erythroxylum coca leaves by MALDI IMS, preserving the histology of the monitored compounds. Therefore, in this work, positive-ion mode MALDI Fourier-transform ion cyclotron resonance imaging mass spectrometry (MALDI(+)FT-ICR IMS) was applied to identify and analyze the distribution of alkaloids on the surface of coca leaves, evaluating the ionization efficiency of three matrices (α-cyano-4-hydroxycinnamic acid (CHCA), 2-mercaptobenzothiazole (MBT), and 2,5-dihydroxybenzoic acid (DHB)). The last was chosen as the best matrix in this study, and it was studied in five concentrations (0.5, 1.0, 2.0, 4.0, and 8.0 mg·mL-1), where 2 mg·mL-1 was the most efficient. The washing of coca leaves with the organic solvents (acetonitrile, methanol, toluene, and dichloromethane) tested did not improve the performance of the ionization process. Finally, a tissue section, 50 µm thick, was used to study the inner part of the leaf tissue, where alkaloids and flavonoid molecules were detected.


Subject(s)
Alkaloids/analysis , Coca/chemistry , Plant Leaves/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Benzothiazoles/analysis , Coumaric Acids/analysis , Cyclotrons , Gentisates/analysis , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...