Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
2.
Protein Pept Lett ; 28(12): 1425-1433, 2021.
Article in English | MEDLINE | ID: mdl-34792000

ABSTRACT

BACKGROUND: Acute Kidney Injury (AKI), a common disease of the urinary system, can be induced by high doses of gentamicin (GM). The renin-angiotensin system exerts a key role in the progression of the AKI since elevated intrarenal levels of Ang II, and ACE activity is found in this condition. However, it is unknown whether oral administration of angiotensin (Ang)-(1-7), a heptapeptide that evokes opposite effects of Ang II, may attenuate the renal injuries induced by gentamicin. OBJECTIVES: To evaluate the effects of Ang-(1-7) on GM-induced renal dysfunction in rats. METHODS: AKI was induced by subcutaneous administration of GM (80 mg/Kg) for 5 days. Simultaneously, Ang-(1-7) included in hydroxypropyl ß-cyclodextrin (HPßCD) was administered by gavage [46 µg/kg HPßCD + 30 µg/kg Ang-(1-7)]. At the end of the treatment period (sixth day), the rats were housed in metabolic cages for renal function evaluation. Thereafter, blood and kidney samples were collected. RESULTS: Ang-(1-7) attenuated the increase of the plasmatic creatinine and proteinuria caused by GM but did not change the glomerular filtration rate nor tubular necrosis. Ang-(1-7) attenuated the increased urinary flow and the fractional excretion of H2O and potassium observed in GM rats but intensified the elevated excretion of sodium in these animals. Morphological analysis showed that Ang-(1-7) also reduced the tubular vacuolization in kidneys from GM rats. CONCLUSION: Ang-(1-7) promotes selective beneficial effects in renal injuries induced by GM.


Subject(s)
Acute Kidney Injury , Angiotensin I/pharmacology , Gentamicins/adverse effects , Peptide Fragments/pharmacology , Acute Kidney Injury/blood , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Administration, Oral , Animals , Drug Evaluation , Gentamicins/pharmacology , Male , Rats , Rats, Wistar
3.
Cells ; 10(10)2021 10 14.
Article in English | MEDLINE | ID: mdl-34685735

ABSTRACT

The renin-angiotensin system (RAS) plays a pivotal role in a wide series of physiological processes, among which inflammation and blood pressure regulation. One of its key components, the angiotensin-converting enzyme 2, has been identified as the entry point of the SARS-CoV-2 virus into the host cells, and therefore a lot of research has been devoted to study RAS dysregulation in COVID-19. Here we discuss the alterations of the regulatory RAS axes due to SARS-CoV-2 infection on the basis of a series of recent clinical investigations and experimental analyzes quantifying, e.g., the levels and activity of RAS components. We performed a comprehensive meta-analysis of these data in view of disentangling the links between the impaired RAS functioning and the pathophysiological characteristics of COVID-19. We also review the effects of several RAS-targeting drugs and how they could potentially help restore the normal RAS functionality and minimize the COVID-19 severity. Finally, we discuss the conflicting evidence found in the literature and the open questions on RAS dysregulation in SARS-CoV-2 infection whose resolution would improve our understanding of COVID-19.


Subject(s)
COVID-19/blood , COVID-19/metabolism , Renin-Angiotensin System , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Blood Pressure/drug effects , Humans , Peptidyl-Dipeptidase A/metabolism , Renin/pharmacology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
4.
BMC Sports Sci Med Rehabil ; 13(1): 47, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33957973

ABSTRACT

BACKGROUND: The ECA2/Ang-(1-7)/Mas axis is shown to be involved in effects mediated by physical exercise, as it can induce the release of nitric oxide (ON) and bradykinin (BK), which are potent vasodilators. The vasodilating action the NO/BK can contribute to increased metabolic efficiency in muscle tissue and central nervous system. The formulation HPß-CD-Ang-(1-7) through its mechanisms of action can be a promising supplement to aid in the maintenance and improvement of performance and may also favor recovery during competitions. The premise of this study was to investigate the effects of acute oral supplementation HPß-CD-Ang-(1-7) on the performance of mountain bike (MTB) practitioners. METHODS: Fourteen recreational athletes, involved in training programs for at least one year, participated in this crossover design study. Subjects underwent two days of testing with a seven-day interval. HPß-CD-Ang-(1-7) (1.75 mg) and HPßCD-Placebo were provided in capsules three hours prior to tests. To determine the safety of the HPß-CD-Ang-(1-7) formulation associated with physical effort, cardiovascular parameters heart rate (HR) and blood pressure (BP) were analyzed. Physical performance was measured using maximal oxygen uptake (VO2), total exercise time (TET), mechanical work (MW), mechanical efficiency (ME), and rating of perceived exertion (RPE). Respiratory exchange coefficient (REC), lactate and non-esterified fatty acids (NEFAs) were measured. Maximal incremental tests were performed on a progressively loaded leg cycle ergometer. RESULTS: There were no significant differences in terms of HR or BP at rest and maximum effort between the HPß-CD-Ang-(1-7) and placebo groups. The VO2max showed significant differences (p = 0.04). It was higher in the Ang-(1-7)condition (66.15 mlO2.kg- 1.min- 1) compared to the placebo (60.72 mlO2.kg- 1.min- 1). This was also observed for TET (Ang-(1-7) 39.10 min vs. placebo 38.14 min; p = 0.04), MW (Ang-(1-7) 156.7 vs. placebo 148.2; p = 0.04), and at the lowest RPE (Ang-(1-7) vs. placebo; p = 0.009). No significant differences were observed for REC, NEFAs, or Lactate. CONCLUSIONS: These results suggest that HPß-CD-Ang-(1-7) improves the physical performance of MTB recreational athletes and could be a promising supplement. TRIAL REGISTRATION: RBR-2 × 56pw8, registered January 15th, 2021. The study was prospectively registered.

5.
Exp Physiol ; 106(8): 1710-1719, 2021 08.
Article in English | MEDLINE | ID: mdl-33998067

ABSTRACT

NEW FINDINGS: What is the central question of this study? Eccentric contraction exercises cause damage to muscle fibres and induce inflammatory responses. The exacerbation of this process can induce deposition of fibrous connective tissue, leading to decreased muscle function. The aim of this study was to examine the role of angiotensin-(1-7) in this context. What is the main finding and its importance? Our results show that oral treatment with angiotensin-(1-7) decreases muscle damage induced by eccentric exercise, reducing inflammation and fibrosis in the gastrocnemius and soleus muscles. This study shows a potential effect of angiotensin-(1-7) for the prevention of muscle injuries induced by physical exercise. ABSTRACT: Eccentric contraction exercises cause damage to the muscle fibres and induce an inflammatory reaction. The protective effect of angiotensin-(1-7) [Ang-(1-7)] in skeletal muscle has led us to examine the role of this peptide in modifying processes associated with inflammation and fibrogenesis induced by eccentric exercise. In this study, we sought to investigate the effects of oral administration of Ang-(1-7) formulated in hydroxypropyl ß-cyclodextrin (HPß-CD) in prevention and treatment of muscle damage after downhill running. Male Wistar rats were divided into three groups: control (untreated and not exercised; n = 10); treated/exercised HPß-CD Ang-(1-7) (n = 40); and treated/exercised HPß-CD (n = 40). Exercised groups were subjected to a single eccentric contraction exercise session on a treadmill inclined to -13° at a constant speed of 20 m/min, for 60 min. Oral administration of HPß-CD Ang-(1-7) and HPß-CD was performed 3 h before the exercise protocol and daily as a single dose, until the end of the experiment. Samples were collected 4, 12, 24, 48 and 72 h after the exercise session. The animals treated with the Ang-(1-7) showed lower levels of creatine kinase, lower levels of tumor necrosis factor-α in soleus muscle and increased levels of interleukin-10 cytokines. The inflammatory cells and deposition of fibrous connective tissue in soleus and gastrocnemius muscles were lower in the group treated with Ang-(1-7). The results of this study show that treatment with an oral formulation of Ang-(1-7) enhances the process of repair of muscle injury induced by eccentric exercise.


Subject(s)
Physical Conditioning, Animal , Administration, Oral , Angiotensin I , Animals , Fibrosis , Male , Muscle, Skeletal/physiology , Peptide Fragments , Physical Conditioning, Animal/physiology , Rats , Rats, Wistar
6.
Front Pharmacol ; 11: 1263, 2020.
Article in English | MEDLINE | ID: mdl-32982727

ABSTRACT

In previous studies we have shown that oral Ang-(1-7) has a beneficial therapeutic effect on cardiometabolic disturbances present in metabolic syndrome (MetS). Based on the fact that Ang-(1-7) acts through release of nitric oxide (NO), a new peptide, A-1317 was engineered adding the amino acid L-Arginine, the NO precursor, to the N-terminal portion of the Ang-(1-7). Therefore, in a single molecule the substrate and the activator of NO are combined. In the present study, we evaluated the effect of A-1317 oral treatment on liver-glucose metabolism in MetS induced by high fat (HF) diet in rats. Rats were subjected to control (AIN-93M, CT) or HF diets for 15 weeks to induce MetS and treated with A-1317, Ang-(1-7) included into hydroxypropyl-ß-cyclodextrin (HPßCD) or empty HPßCD (E), in the last 7 weeks. At the end of 15 weeks, hemodynamic, biometric, and biochemical parameters, redox process, and qRT-PCR gene expression of NO synthase and RAS components were evaluated in the liver. HF/E rats increased body mass gain, adiposity index, despite the reduction in food intake, increased plasma leptin, total cholesterol, triglycerides, ALT, fasting blood glucose, OGTT and insulin, HOMA-IR and MAP and HR. Furthermore, the MetS rats presented increased in liver angiotensinogen, AT1R, ACE mRNA gene expression and concentration of MDA and carbonylated protein. Both Ang-(1-7) and A-1317 oral treatment in MetS rats reverted most of these alterations. However, A-1317 was more efficient in reducing body mass gain, ALT, AST, total cholesterol, insulin, fasting blood glucose, ameliorating ß cell capacity by increasing HOMA-ß and QUICKI, whereas Ang-(1-7) reduced HOMA-ß and QUICKI. In addition, Ang-(1-7) increased Mas and AKT liver mRNA gene expression, while A-1317 increased both Mas and MRGD and AMPK liver mRNA gene expression, suggesting a distinct pathway of action of Ang-(1-7) and A-1317 in MetS rats. Taken together, our data showed that treatment with A-1317 was able to ameliorate MetS disorders and suggested that this effect was mainly via MRGD via activation of AMPK and increasing ß cell function.

7.
Oxid Med Cell Longev ; 2019: 5868935, 2019.
Article in English | MEDLINE | ID: mdl-31396301

ABSTRACT

In prevention studies of metabolic syndrome (MetS), Ang-(1-7) has shown to improve the insulin signaling. We evaluated the HPßCD/Ang-(1-7) treatment on lipid metabolism, renin-angiotensin system (RAS) components, oxidative stress, and insulin pathway in the liver and gastrocnemius muscle and hepatic steatosis in rats with established MetS. After 7 weeks of high-fat (FAT) or control (CT) diets, rats were treated with cyclodextrin (HPßCD) or HPßCD/Ang-(1-7) in the last 6 weeks. FAT-HPßCD/empty rats showed increased adiposity index and body mass, gene expression of ACE/ANG II/AT1R axis, and oxidative stress. These results were accompanied by imbalances in the insulin pathway, worsening of liver function, hyperglycemia, and dyslipidemia. Oral HPßCD/Ang-(1-7) treatment decreased ACE and AT1R, increased ACE2 gene expression in the liver, and restored thiobarbituric acid reactive substances (TBARS), catalase (CAT), superoxide dismutase (SOD), insulin receptor substrate (Irs-1), glucose transporter type 4 (GLUT4), and serine/threonine kinase 2 (AKT-2) gene expression in the liver and gastrocnemius muscle improving hepatic function, cholesterol levels, and hyperglycemia in MetS rats. Overall, HPßCD/Ang-(1-7) treatment restored the RAS components, oxidative stress, and insulin signaling in the liver and gastrocnemius muscle contributing to the establishment of blood glucose and lipid homeostasis in MetS rats.


Subject(s)
Angiotensin I/pharmacology , Antioxidants/pharmacology , Metabolic Syndrome/pathology , Peptide Fragments/pharmacology , Renin-Angiotensin System/drug effects , Signal Transduction/drug effects , Administration, Oral , Angiotensin-Converting Enzyme 2 , Animals , Catalase/genetics , Catalase/metabolism , Cyclodextrins/pharmacology , Diet, High-Fat , Gene Expression Regulation/drug effects , Insulin/metabolism , Liver/drug effects , Liver/metabolism , Liver/pathology , Metabolic Syndrome/metabolism , Metabolic Syndrome/veterinary , Muscle, Skeletal/metabolism , Oxidative Stress/drug effects , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Rats , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism
8.
Mediators Inflamm ; 2019: 2401081, 2019.
Article in English | MEDLINE | ID: mdl-30918468

ABSTRACT

The renin-angiotensin system (RAS) peptides play an important role in inflammation. Resolution of inflammation contributes to restore tissue homeostasis, and it is characterized by neutrophil apoptosis and their subsequent removal by macrophages, which are remarkable plastic cells involved in the pathophysiology of diverse inflammatory diseases. However, the effects of RAS peptides on different macrophage phenotypes are still emerging. Here, we evaluated the effects of angiotensin-(1-7) (Ang-(1-7)) and the most novel RAS peptide, alamandine, on resting (M0), proinflammatory M(LPS+IFN-γ), and anti-inflammatory M(IL-4) macrophage phenotypes in vitro, as well as on specific immune cell populations and macrophage subsets into the pleural cavity of LPS-induced pleurisy in mice. Our results showed that Ang-(1-7) and alamandine, through Mas and MrgD receptors, respectively, do not affect M0 macrophages but reduce the proinflammatory TNF-α, CCL2, and IL-1ß transcript expression levels in LPS+IFN-γ-stimulated macrophages. Therapeutic administration of these peptides in LPS-induced inflammation in mice decreased the number of neutrophils and M1 (F4/80lowGr1+CD11bmed) macrophage frequency without affecting the other investigated macrophage subsets. Our data suggested that both Ang-(1-7) and alamandine, through their respective receptors Mas and MrgD, promote an anti-inflammatory reprogramming of M(LPS+IFN-γ)/M1 macrophages under inflammatory circumstances and potentiate the reprogramming induced by IL-4. In conclusion, our work sheds light on the emerging proresolving properties of Ang-(1-7) and alamandine, opening new avenues for the treatment of inflammatory diseases.


Subject(s)
Angiotensin I/pharmacology , Anti-Inflammatory Agents/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Oligopeptides/pharmacology , Peptide Fragments/pharmacology , Animals , Cells, Cultured , Interleukin-4/pharmacology , Male , Mice , Mice, Inbred BALB C , Proto-Oncogene Mas , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism
9.
J Physiol Biochem ; 74(3): 441-454, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29797227

ABSTRACT

Physical training (PT) has been considered as a treatment in metabolic syndrome (MS), since it induces thermogenic activity in brown (BAT) and white (WAT) adipose tissues. We evaluated the therapeutic effect of PT on activity of WAT and BAT in rats with MS induced by high-fat diet (30% lard) for 13 weeks and submitted, for the last 6 weeks, to swimming or kept sedentary (SED) rats. MS-SED rats compared to control diet (CT-SED) rats showed low physical fitness and high levels of glucose, insulin, homeostasis evaluation of insulin resistance (HOMA-IR), homeostasis evaluation of the functional capacity of ß-cells (HOMA-ß), and blood pressure. The gastrocnemius muscle decreased in peroxisome proliferator-activated receptor gamma coactivator 1-alpha and beta (PGC-1α, PGC-1ß), and uncoupled protein 2 and 3 (UCP2 and UCP3) expressions. Both WAT and BAT increased in the adipocyte area and decreased in blood vessels and fibroblast numbers. WAT increased in expression of pro-inflammatory adipokines and decreased in anti-inflammatory adipokine and adiponectin. WAT and gastrocnemius showed impairment in the insulin signaling pathway. In response to PT, MS rats showed increased physical fitness and restoration of certain biometric and biochemical parameters and blood pressure. PT also induced thermogenic modulations in skeletal muscle, WAT and BAT, and also improved the insulin signaling pathway. Collectively, PT was effective in treating MS by inducing improvement in physical fitness and interchangeable effects between skeletal muscle, WAT and BAT, suggesting a development of brown-like adipocyte cells.


Subject(s)
Adipose Tissue, Brown/pathology , Adipose Tissue, White/pathology , Adiposity , Insulin Resistance , Metabolic Syndrome/therapy , Physical Conditioning, Animal , Thermogenesis , Adipokines/genetics , Adipokines/metabolism , Adipose Tissue, Brown/blood supply , Adipose Tissue, Brown/immunology , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/blood supply , Adipose Tissue, White/immunology , Adipose Tissue, White/metabolism , Animals , Biomarkers/blood , Diet, High-Fat/adverse effects , Dietary Fats/adverse effects , Gene Expression Regulation , Hyperglycemia/etiology , Hyperglycemia/prevention & control , Hyperinsulinism/etiology , Hyperinsulinism/prevention & control , Hypertension/etiology , Hypertension/prevention & control , Male , Metabolic Syndrome/metabolism , Metabolic Syndrome/pathology , Metabolic Syndrome/physiopathology , Muscle Proteins/genetics , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Random Allocation , Rats, Inbred F344 , Weaning
10.
J Biomed Mater Res A ; 106(8): 2243-2250, 2018 08.
Article in English | MEDLINE | ID: mdl-29577602

ABSTRACT

Subcutaneous implantation of synthetic materials and biomedical devices often induces abnormal tissue healing - the foreign body reaction-which impairs their function. In particular, Interferon-γ (IFN-γ) is a critical endogenous mediator of inflammation and plays a key role in a wide variety of biological responses including tissue healing. However, the contribution of endogenous IFN-γ on different features of the foreign body response induced by synthetic implants regarding neovascularization, inflammation, and fibrogenesis is not well known. Here, we evaluated inflammatory angiogenesis and fibrogenesis induced by implantation of polyether-polyurethane sponges in mice targeted disrupted of the interferon-γ gene (IFN-γ-/- ) and wild-type (WT). The hemoglobin content, the number of vessels, and blood flow (evaluated by LDPI-laser Doppler perfusion imaging) were decreased in the implants from IFN-γ-/- as compared to WT mice. Likewise, neutrophils and macrophages accumulation (MPO and NAG activities, respectively) was decreased in IFN-γ-/- implants. Interestingly, while the local content of VEGF, TNF-α, CXCL-1/KC, as measured by ELISA, and iNOS expression, as measured by qPCR, were significantly reduced, the content of IL-10 was greatly increased in the implants from IFN-γ-/- mice as compared to WT mice. No alterations were observed in CCL-2/MCP-1 levels. Lastly, the collagen deposition, assessed by Picro-Sirius red-stained histological sections, was also reduced in IFN-γ-/- implants. Altogether, these data suggest that IFN-γ activity contributes to inflammatory angiogenesis and fibrogenesis in synthetic implants and that lack of IFN-γ expression attenuates foreign body reaction to implants in mice. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2243-2250, 2018.


Subject(s)
Foreign-Body Reaction/pathology , Interferon-gamma/deficiency , Prostheses and Implants , Subcutaneous Tissue/pathology , Animals , Collagen/metabolism , Fibrosis , Gene Expression Regulation , Leukocytes/metabolism , Male , Mice, Inbred C57BL , Neovascularization, Physiologic , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
Nanomedicine ; 14(3): 781-788, 2018 04.
Article in English | MEDLINE | ID: mdl-29278747

ABSTRACT

There are multiple challenges for neuropharmacology in the future. Undoubtedly, one of the greatest challenges is the development of strategies for pharmacological targeting of specific brain regions for treatment of diseases. GABA is the main inhibitory neurotransmitter in the central nervous system, and dysfunction of GABAergic mechanisms is associated with different neurological conditions. Liposomes are lipid vesicles that are able to encapsulate chemical compounds and are used for chronic drug delivery. This short review reports our experience with the development of liposomes for encapsulation and chronic delivery of GABA to sites within the brain. Directions for future research regarding the efficacy and practical use of GABA-containing liposomes for extended periods of time as well as understanding and targeting neurological conditions are discussed.


Subject(s)
Drug Delivery Systems , Liposomes/administration & dosage , Nervous System Diseases/therapy , gamma-Aminobutyric Acid/administration & dosage , Animals , Humans , Liposomes/chemistry , gamma-Aminobutyric Acid/chemistry
12.
Mol Cell Biochem ; 444(1-2): 43-52, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29204818

ABSTRACT

Lung tumors are a frequent type of cancer in humans and a leading cause of death, and the late diagnostic contributes to high mortality rates. New therapeutic strategies are needed, and the heptapeptide angiotensin-(1-7) [ang-(1-7)] demonstrated the ability to control cancer growth rates and migration in vitro and in vivo. However, the possible use of the heptapeptide in clinical trials demands deeper analyses to elucidate molecular mechanisms of its effect in the target cells. In this study, we investigated relevant elements that control pro-inflammatory environment and cellular migration, focusing in the post-transcription mechanism using lung tumor cell line. In our cellular model, the microRNA-513a-3p was identified as a novel element targeting ITG-ß8, thereby controlling the protein level and its molecular function in the controlling of migration and pro-inflammatory environment. These findings provide useful information for future studies, using miR-513a-3p as an innovative molecular tool to control lung tumor cell migration, which will support more effective clinical treatment of the patients with the widely used chemotherapeutic agents, increasing survival rates.


Subject(s)
Cell Movement , Integrin beta Chains/metabolism , Lung Neoplasms/metabolism , MicroRNAs/metabolism , Models, Biological , Neoplasm Proteins/metabolism , RNA, Neoplasm/metabolism , A549 Cells , Humans , Integrin beta Chains/genetics , Lung Neoplasms/genetics , Lung Neoplasms/pathology , MicroRNAs/genetics , Neoplasm Proteins/genetics , RNA, Neoplasm/genetics
13.
Peptides ; 96: 15-19, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28870798

ABSTRACT

Angiotensin-(1-7) (Ang [1-7]) and its receptor Mas are involved in a number of physiological processes, including control of arterial pressure and modulation of nervous system actions. However, the involvement of the Ang-(1-7)/Mas axis in peripheral nerve injury has not been investigated. Using a model of sciatic nerve injury in mice, we demonstrated opposing changes in Mas receptor expression at days 2 and 14 post-injury. Mas receptor expression was more intense 2days after the nerve lesion, compared with the intensity of the intact nerve. At this time point, the sciatic nerve functional index was -20. At day 14 after the lesion, the intensity of the immunostaining labeling in longitudinal sections of the nerve was reduced (∼30%) and the functional index increased +36 (gait improvement). In the axotomized group treated with A779 (a Mas receptor antagonist), the functional recovery index decreased in relation to the untreated axotomized group. The Mas receptor inhibitor also altered the intensity of labeling of S-100, GAP43, and IBA-1 (morphological features compatible with delayed axon growth). This study demonstrated that Ang-(1-7)/Mas axis activity was differentially modulated in the acute and post-acute stages of nerve injury.


Subject(s)
Peripheral Nerves/drug effects , Peripheral Nerves/metabolism , Proto-Oncogene Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Sciatic Neuropathy/metabolism , Angiotensin II/analogs & derivatives , Angiotensin II/pharmacology , Animals , GAP-43 Protein/metabolism , Male , Mice , Peptide Fragments/pharmacology , Peripheral Nerves/pathology , Proto-Oncogene Mas , Proto-Oncogene Proteins/antagonists & inhibitors , Receptors, G-Protein-Coupled/antagonists & inhibitors , S100 Proteins/metabolism
14.
Clin Sci (Lond) ; 130(24): 2305-2316, 2016 Dec 01.
Article in English | MEDLINE | ID: mdl-27624141

ABSTRACT

Previous studies have demonstrated a protective effect of the Ang-(1-7)/Mas receptor axis on pathological cardiac hypertrophy. Also, the involvement of Mas receptor in exercise-induced cardiac hypertrophy has been suggested. However, the role of the Ang-(1-7)/Mas receptor on pregnancy-induced cardiac remodelling remains unknown. The objective of the present study was to evaluate the participation of the Mas receptor in the development of the cardiac hypertrophy and fibrosis induced by gestation. Female Wistar rats were divided in three groups: control, pregnant and pregnant treated with Mas receptor antagonist A-779. Wild-type (WT) and Mas-knockout (KO) mice were distributed in non-pregnant and pregnant groups. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography. The medial part of the left ventricle (LV) was collected for histological analysis. Echocardiographic analysis was used to evaluate cardiac function. SBP was not changed by pregnancy or A-779 treatment in the Wistar rats. Pharmacological blockade or genetic deletion of Mas receptor attenuates the pregnancy-induced myocyte hypertrophy. The treatment with A-779 or genetic deletion of the Mas receptor increased the collagen III deposition in LV from pregnant animals without changing fibroblast proliferation. KO mice presented a lower ejection fraction (EF), fractional shortening (FS) and stroke volume (SV) and higher end systolic volume (ESV) compared with WT. Interestingly, pregnancy restored these parameters. In conclusion, these data show that although Mas receptor blockade or deletion decreases physiological hypertrophy of pregnancy, it is associated with more extracellular matrix deposition. These alterations are associated with improvement of cardiac function through a Mas-independent mechanism.

15.
Hypertens Res ; 39(7): 506-12, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27053009

ABSTRACT

The renin-angiotensin system (RAS) is related to physiological adaptations induced by exercise. Angiotensin-converting enzyme (ACE) 2 is a major regulator of the RAS in tissues, as it metabolizes angiotensin (Ang) II to Ang-(1-7). The aim of this study was to determine the effects of ACE2 deficiency on physical performance and physiological adaptations induced by voluntary running. Physical performance, body composition and plasma angiotensin levels, as well as tissue morphology and gene expression of RAS components in the left ventricle (LV) and skeletal muscle (gastrocnemius), were evaluated in ACE2-deficient (ACE2(-/y)) and wild-type (ACE2(+/y)) mice after 6 weeks of voluntary wheel running. ACE2(-/y) mice run less than ACE2(+/y) mice (19±4.7 vs. 26±12.6 revolutions per day × 100, P<0.01). The ACE2(+/y) group presented a lower fat mass (15±1.1%) and higher muscle mass (76.6±1.6%) after 6 weeks of voluntary running compared with the sedentary control group (fat mass: 18.3±2.1%; muscle mass: 72.7±2.2). However, no change in body composition was observed in ACE2(-/y) mice after exercise. Heart and skeletal muscle hypertrophy was observed only in trained ACE2(+/y) mice. Besides a small decrease in Ang I in ACE2(-/y) mice, plasma levels of angiotensin peptides remained unchanged by exercise or ACE2 deficiency. In the LV of trained animals, AT2 gene expression was higher in ACE2(+/y) compared with ACE2(-/y) mice. ACE2 deficiency leads to an increase in AT1 gene expression in skeletal muscle. ACE expression in soleus was increased in all exercised groups. ACE2 deficiency affects physical performance and impairs cardiac and skeletal muscle adaptations to exercise.


Subject(s)
Adaptation, Physiological , Heart/physiology , Muscle, Skeletal/physiology , Peptidyl-Dipeptidase A/deficiency , Angiotensin-Converting Enzyme 2 , Angiotensins/blood , Animals , Exercise , Exercise Test , Humans , Male , Mice , Mice, Inbred C57BL , Myocardium
16.
Mol Cell Biochem ; 411(1-2): 363-71, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26541756

ABSTRACT

The activated renin-angiotensin-aldosterone system modulates several metabolic pathways that contribute to left ventricular hypertrophy and heart failure. In this metabolic system, angiotensin II modulates heart morphophysiological changes triggered by a series of inflammatory and pro-inflammatory responses; however, the fine tuning associated with the control of this biochemical pathway remains unknown. Here, we investigated elements involved in the post-transcriptional regulation of the pro-inflammatory environment in the H9c2 cardiac cell line, focusing on miRNA elements that modulate PTEN expression. A cellular model of investigation was established and the miR-315-5p was identified as a novel element targeting PTEN in this cardiac cell line, thereby controlling the protein level. This interconnected pathway contributes to the control of the pro-inflammatory environment in Ang II-treated cells.


Subject(s)
Inflammation/genetics , MicroRNAs/physiology , PTEN Phosphohydrolase/genetics , Angiotensin II/pharmacology , Animals , Cell Line , RNA Processing, Post-Transcriptional , Rats
17.
Hypertension ; 66(2): 389-95, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26077567

ABSTRACT

Mineralocorticoids have been implicated in the pathogenesis of diastolic heart failure. On the contrary, angiotensin (Ang)-(1-7) has emerged as a potential strategy for treatment of cardiac dysfunction induced by excessive mineralocorticoid receptor activation. A critical question about the cardioprotective effect of Ang-(1-7) in hypertensive models is its dependence on blood pressure (BP) reduction. Here, we addressed this question by investigating the mechanisms involved in Ang-(1-7) cardioprotection against mineralocorticoid receptor activation. Sprague-Dawley (SD) and transgenic (TG) rats that overexpress an Ang-(1-7) producing fusion protein (TG(A1-7)3292) were treated with deoxycorticosterone acetate (DOCA) for 6 weeks. After treatment, SD rats became hypertensive and developed ventricular hypertrophy. These parameters were attenuated in TG-DOCA. SD-DOCA rats developed diastolic dysfunction which was associated at the cellular level with reduced Ca(2+) transient. Oppositely, TG-DOCA myocytes presented enhanced Ca(2+) transient. Moreover, higher extracellular signal-regulated kinase phosphorylation, type 1 phosphatase, and protein kinase Cα levels were found in SD-DOCA cells. In vivo, pressor effects of DOCA can contribute to the diastolic dysfunction, raising the question of whether protection in TG was a consequence of reduced BP. To address this issue, BP in SD-DOCA was kept at TG-DOCA level by giving hydralazine or by reducing the DOCA amount given to rats (Low-DOCA). Under similar BP, diastolic dysfunction and molecular changes were still evident in DOCA-hydralazine and SD-low-DOCA, but not in TG-DOCA. In conclusion, Ang-(1-7) protective signaling against DOCA-induced diastolic dysfunction occurs independently of BP attenuation and is mediated by the activation of pathways involved in Ca(2+) handling, hypertrophy, and survival.


Subject(s)
Angiotensin I/therapeutic use , Blood Pressure/physiology , Desoxycorticosterone Acetate/adverse effects , Heart Failure, Diastolic/chemically induced , Heart Failure, Diastolic/prevention & control , Peptide Fragments/therapeutic use , Angiotensin I/pharmacology , Animals , Blood Pressure/drug effects , Calcium/physiology , Calcium Signaling/drug effects , Calcium Signaling/physiology , Disease Models, Animal , Dose-Response Relationship, Drug , Heart Failure, Diastolic/physiopathology , Hydralazine/pharmacology , Hypertension/physiopathology , Male , Peptide Fragments/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Transgenic
18.
Clin Dev Immunol ; 2013: 263846, 2013.
Article in English | MEDLINE | ID: mdl-24302957

ABSTRACT

Hypercholesterolemia is one of the most important risk factors for erectile dysfunction, mostly due to the impairment of oxidative stress and endothelial function in the penis. The cannabinoid system might regulate peripheral mechanisms of sexual function; however, its role is still poorly understood. We investigated the effects of CB2 activation on oxidative stress and fibrosis within the corpus cavernosum of hypercholesterolemic mice. Apolipoprotein-E-knockout mice were fed with a western-type diet for 11 weeks and treated with JWH-133 (selective CB2 agonist) or vehicle during the last 3 weeks. CB2 receptor expression, total collagen content, and reactive oxygen species (ROS) production within the penis were assessed. In vitro corpus cavernosum strips preparation was performed to evaluate the nitric oxide (NO) bioavailability. CB2 protein expression was shown in cavernosal endothelial and smooth muscle cells of wild type and hypercholesterolemic mice. Treatment with JWH-133 reduced ROS production and NADPH-oxidase expression in hypercholesterolemic mice penis. Furthermore, JWH-133 increased endothelial NO synthase expression in the corpus cavernosum and augmented NO bioavailability. The decrease in oxidative stress levels was accompanied with a reduction in corpus cavernosum collagen content. In summary, CB2 activation decreased histological features, which were associated with erectile dysfunction in hypercholesterolemic mice.


Subject(s)
Cannabinoids/pharmacology , Erectile Dysfunction/complications , Erectile Dysfunction/drug therapy , Hypercholesterolemia/complications , Receptor, Cannabinoid, CB2/agonists , Animals , Cannabinoids/administration & dosage , Disease Models, Animal , Erectile Dysfunction/metabolism , Fibrosis , Hypercholesterolemia/metabolism , Lipids/blood , Male , Mice , Mice, Knockout , NADPH Oxidases/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/metabolism , Penis/drug effects , Penis/metabolism , Penis/pathology , Reactive Oxygen Species/metabolism , Receptor, Cannabinoid, CB2/metabolism
19.
Lipids Health Dis ; 12: 136, 2013 Sep 18.
Article in English | MEDLINE | ID: mdl-24044579

ABSTRACT

BACKGROUND: The metabolic syndrome (MS) is characterized by variable coexistence of metabolic and pathophysiological alterations which are important risk factors for developing of type II diabetes and/or cardiovascular diseases. Increased of MS patients in worldwide has stimulated the development of experimental models. However, it is still challenging to find an dietetic model that most closely approximates human MS and, in addition, is not yet fully established the effect of different diets of MS in lipid metabolism in rats of different ages. The aim of this study was to evaluate the effect of different diets of MS in lipid metabolism and ectopic fat deposition and define the most appropriate diet for inducing the characteristic disturbances of the human MS in rats of different ages. METHODS: Young (4 weeks old) and adult rats (12 weeks old) were given a high-fat (FAT) or high-fructose diet (FRU) for 13 weeks and biochemical, physiological, histological and biometric parameters were evaluated. RESULTS: In young rats, the FAT diet induced increased mean blood pressure (MAP) and heart rate (HR), body weight after 6 to 10 weeks, and in the 13th week, increased the liver, mesenteric, retroperitoneal and epididymal fat weights, fasting glucose, alanine aminotransferase (ALT) and aspartate aminotransferase (AST) and reduced HDL cholesterol; and also induced non-alcoholic fatty liver disease (NAFLD) and renal inflammatory infiltrates. In adult rats, the FRU diet induced transient elevations of MAP and HR in the 6th week, and, at 13 weeks, increased fasting glucose, triglycerides, total cholesterol, AST and ALT; increased liver, kidneys and retroperitoneal fat weights; and induced macrovesicular and microvesicular NAFLD, the presence of fat cells in the kidney, glomerular sclerosis, and liver and kidney inflammation. Additionally, the FAT and FRU diets induced, respectively, increases in liver glycogen in adults and young rats. CONCLUSIONS: Our data show that FRU diet in adult rats causes biggest change on metabolism of serum lipids and lipid accumulation in liver and kidney, while the FAT diet in young rats induces elevation of MAP and HR and higher increased visceral lipid stores, constituting the best nutritional interventions to induce MS in rats.


Subject(s)
Diet, High-Fat , Fatty Liver/metabolism , Fructose/administration & dosage , Kidney/metabolism , Liver/metabolism , Metabolic Syndrome/metabolism , Adipose Tissue/drug effects , Age Factors , Animals , Blood Pressure/drug effects , Body Weight/drug effects , Dietary Fats/adverse effects , Disease Models, Animal , Fatty Liver/etiology , Fatty Liver/pathology , Heart Rate/drug effects , Humans , Kidney/drug effects , Kidney/pathology , Lipid Metabolism/drug effects , Lipoproteins/blood , Liver/drug effects , Liver/pathology , Male , Metabolic Syndrome/etiology , Metabolic Syndrome/pathology , Non-alcoholic Fatty Liver Disease , Rats , Rats, Inbred F344 , Triglycerides/blood
20.
Hypertension ; 62(2): 324-30, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23753417

ABSTRACT

Angiotensin (Ang)-(1-7) has been described as an important tool on treating and preventing metabolic disorders. In this study, we aimed to evaluate the effect of an oral formulation of Ang-(1-7) included in hydroxypropylß-cyclodextrin (HPßCD/Ang-[1-7]) on hepatic function, steatosis, and on liver inflammatory markers expression in mice treated with a high-fat diet. Male FVB/N mice were divided into 4 groups and fed for 60 days, with each group receiving 1 of the following diets: standard diet+HPßCD, standard diet+Ang-(1-7)/HPßCD, high-fat diet+HPßCD, or high-fat diet+Ang-[1-7]/HPßCD. Body weight, food intake, and blood parameters, such as total cholesterol, triglyceride, alaninetransaminases, and aspartate transaminases, were evaluated. Immunohistochemical analyses were performed for inflammatory markers tumor necrosis factor-α and interleukin-6. Expression of angiotensin converting enzyme, angiotensin-converting enzyme-2, interleukin-1ß, tumor necrosis factor-α, interleukin-6, transforming growth factor-ß, acetyl-CoA carboxylase, carbohydrate-responsive element-binding protein, peroxisome proliferator-activated receptor-γ, and sterol regulatory element-binding proteins-1c was evaluated by quantitative real-time polymerase chain reaction. The major findings of our study included reduced liver fat mass and weight, decreased plasma total cholesterol, triglyceride, and alaninetransaminase enzyme levels in the oral Ang-(1-7)-treated groups compared with the control groups. These results were accompanied by a significant reduction in tumor necrosis factor-α and interleukin-6 mRNA expression in the liver. Analyses of liver adipogenesis-related genes by quantitative real-time polymerase chain reaction showed that acetyl-CoA carboxylase, peroxisome proliferator-activated receptor-γ, and sterol regulatory element-binding proteins-1c mRNA expression were significantly suppressed. In conclusion, we observed that treatment with Ang-(1-7) improved metabolism and decreased proinflammatory profile and fat deposition in liver of mice.


Subject(s)
Angiotensin I/pharmacology , Fatty Liver/prevention & control , Inflammation/prevention & control , Lipid Metabolism/drug effects , Peptide Fragments/pharmacology , Administration, Oral , Angiotensin I/administration & dosage , Animals , Chemistry, Pharmaceutical , Diet, High-Fat , Interleukin-6/physiology , Male , Mice , Peptide Fragments/administration & dosage , Sterol Regulatory Element Binding Protein 1/physiology , Tumor Necrosis Factor-alpha/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...