Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Adv Exp Med Biol ; 1412: 197-209, 2023.
Article in English | MEDLINE | ID: mdl-37378768

ABSTRACT

COVID-19 stands for Corona Virus Disease 2019, which starts as a viral infection that provokes illness with different symptoms and severity. The infected individuals can be asymptomatic or present with mild, moderate, severe, and critical illness with acute respiratory distress syndrome (ARDS), acute cardiac injury, and multiorgan failure. When the virus enters the cells, it replicates and provokes responses. Most diseased individuals resolve the problems in a short time but unfortunately, some may die, and almost 3 years after the first reported cases, COVID-19 still kills thousands per day worldwide. One of the problems in not curing the viral infection is that the virus passes by undetected in cells. This can be caused by the lack of pathogen-associated molecular patterns (PAMPs) that start an orchestrated immune response, such as activation of type 1 interferons (IFNs), inflammatory cytokines, chemokines, and antiviral defenses. Before all of these events can happen, the virus uses the infected cells and numerous small molecules as sources of energy and building blocks for newly synthesized viral nanoparticles that travel to and infect other host cells. Therefore, studying the cell metabolome and metabolomic changes in biofluids might give insights into the state of the viral infection, viral loads, and defense response. NMR-metabolomics can help in solving the real-time host interactions by monitoring concentration changes in metabolites. This chapter addresses the state of the art of COVIDomics by NMR analyses and presents exemplified biomolecules identified in different world regions and gravities of illness as potential biomarkers.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Cytokines , Antiviral Agents/therapeutic use , Metabolomics
2.
Toxicon ; 198: 64-72, 2021 Jul 30.
Article in English | MEDLINE | ID: mdl-33940046

ABSTRACT

The majority (90%) of the snakebite envenomation in Brazil accounts for Bothrops from the Viperidae family. Some snake venom serine proteases provoke blood coagulation in ophidian accident victims because of their fibrinolytic activity, one of those proteases from Bothrops jararaca (B. jararaca) has been chosen for this study. Our objectives were to isolate and characterize the target serine protease; isolate, purify, and characterize the orange bagasse flavone (hesperetin, Hst), and investigate the interactions between the targets, enzyme, and hesperetin. The purified serine protease was named BjSP24 because of its molecular mass and proteolytic activity. BjSP24 was folded and characterized using circular dichroism and showed low alpha-helix contents (7.7%). BjSP24 exhibited sequence similarity to other known snake venom serine proteases as measured in the enzyme tryptic peptides' LC-MS/MS run. Hesperetin was obtained within the expected yield and with the predominance of 2S isomer (82%). It acted as a mixed inhibitor for the serine protease (SVSP) from Bothrops jararaca snake venom observed in three different in vitro experiments, fluorescence, kinetics, and SSTD-NMR. It is still to determine if hesperetin might aid-in reverting the on site blood clotting problems just after snakebite accidents.


Subject(s)
Bothrops , Crotalid Venoms , Animals , Brazil , Chromatography, Liquid , Hesperidin , Serine Proteases , Tandem Mass Spectrometry
3.
J Agric Food Chem ; 68(29): 7555-7570, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32559375

ABSTRACT

Phytopathogens are responsible for great losses in agriculture, once they are able to subvert or elude the host defense mechanisms through virulence factors secretion for their dissemination. Herein, it is reviewed phytotoxins that act as virulence factors and are produced by bacterial phytopathogens (Candidatus Liberibacter spp., Erwinia amylovora, Pseudomonas syringae pvs and Xanthomonas spp.) and fungi (Alternaria alternata, Botrytis cinerea, Cochliobolus spp., Fusarium spp., Magnaporthe spp., and Penicillium spp.), which were selected in accordance to their worldwide importance due to the biochemical and economical aspects. In the current review, it is sought to understand the role of virulence factors in the pathogen-host interactions that result in plant diseases.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Fungal Proteins/metabolism , Fungi/metabolism , Plant Diseases/microbiology , Virulence Factors/metabolism , Bacteria/genetics , Bacterial Proteins/genetics , Fungal Proteins/genetics , Fungi/genetics , Host-Pathogen Interactions , Virulence Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL