Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 93(5): 052101, 2016 05.
Article in English | MEDLINE | ID: mdl-27300824

ABSTRACT

We study through Monte Carlo simulations and finite-size scaling analysis the nonequilibrium phase transitions of the majority-vote model taking place on spatially embedded networks. These structures are built from an underlying regular lattice over which directed long-range connections are randomly added according to the probability P_{ij}∼r^{-α}, where r_{ij} is the Manhattan distance between nodes i and j, and the exponent α is a controlling parameter [J. M. Kleinberg, Nature (London) 406, 845 (2000)NATUAS0028-083610.1038/35022643]. Our results show that the collective behavior of this system exhibits a continuous order-disorder phase transition at a critical parameter, which is a decreasing function of the exponent α. Precisely, considering the scaling functions and the critical exponents calculated, we conclude that the system undergoes a crossover among distinct universality classes. For α≤3 the critical behavior is described by mean-field exponents, while for α≥4 it belongs to the Ising universality class. Finally, in the region where the crossover occurs, 3<α<4, the critical exponents are dependent on α.

2.
Article in English | MEDLINE | ID: mdl-24032807

ABSTRACT

We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74.

3.
Behav Brain Res ; 250: 81-90, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23644183

ABSTRACT

Previous results show that elevated T-maze (ETM) avoidance responses are facilitated by acute restraint. Escape, on the other hand, was unaltered. To examine if the magnitude of the stressor is an important factor influencing these results, we investigated the effects of unpredictable chronic mild stress (UCMS) on ETM avoidance and escape measurements. Analysis of Fos protein immunoreactivity (Fos-ir) was used to map areas activated by stress exposure in response to ETM avoidance and escape performance. Additionally, the effects of the UCMS protocol on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the hippocampus were investigated. Corticosterone serum levels were also measured. Results showed that UCMS facilitates ETM avoidance, not altering escape. In unstressed animals, avoidance performance increases Fos-ir in the cingulate cortex, hippocampus (dentate gyrus) and basomedial amygdala, and escape increases Fos-ir in the dorsolateral periaqueductal gray and locus ceruleus. In stressed animals submitted to ETM avoidance, increases in Fos-ir were observed in the cingulate cortex, ventrolateral septum, hippocampus, hypothalamus, amygdala, dorsal and median raphe nuclei. In stressed animals submitted to ETM escape, increases in Fos-ir were observed in the cingulate cortex, periaqueductal gray and locus ceruleus. Also, UCMS exposure decreased the number of DCX-positive cells in the dorsal and ventral hippocampus and increased corticosterone serum levels. These data suggest that the anxiogenic effects of UCMS are related to the activation of specific neurobiological circuits that modulate anxiety and confirm that this stress protocol activates the hypothalamus-pituitary-adrenal axis and decreases hippocampal adult neurogenesis.


Subject(s)
Anxiety/etiology , Anxiety/pathology , Hippocampus/metabolism , Neurogenesis/physiology , Oncogene Proteins v-fos/metabolism , Analysis of Variance , Animals , Avoidance Learning , Corticosterone/blood , Disease Models, Animal , Doublecortin Domain Proteins , Doublecortin Protein , Escape Reaction , Male , Maze Learning , Mice , Microtubule-Associated Proteins/metabolism , Neuropeptides/metabolism , Rats, Wistar , Reaction Time/physiology , Stress, Psychological/complications , Time Factors
4.
Behav Brain Res ; 238: 170-7, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23098799

ABSTRACT

In a previous study we showed that rats chronically treated with corticosterone (CORT) display anxiogenic behavior, evidenced by facilitation of avoidance responses in the elevated T-maze (ETM) model of anxiety. Treatment with the tricyclic antidepressant imipramine significantly reversed the anxiogenic effects of CORT, while inhibiting ETM escape, a response related to panic disorder. To better understand the neurobiological mechanisms underlying these behavioral effects, analysis of c-fos protein immunoreactivity (fos-ir) was used here to map areas activated by chronic CORT (200 mg pellets, 21-day release) and imipramine (15 mg/kg, IP) administration. We also evaluated the number of cells expressing the neurogenesis marker doublecortin (DCX) in the hippocampus and measured plasma CORT levels on the 21st day of treatment. Results showed that CORT increased fos-ir in the ventrolateral septum, medial amygdala and paraventricular hypothalamic nucleus and decreased fos-ir in the lateral periaqueductal gray. Imipramine, on the other hand, increased fos-ir in the medial amygdala and decreased fos-ir in the anterior hypothalamus. CORT also decreased the number of DCX-positive cells in the ventral and dorsal hippocampus, an effect antagonized by imipramine. CORT levels were significantly higher after treatment. These data suggest that the behavioral effects of CORT and imipramine are mediated through specific, at times overlapping, neuronal circuits, which might be of relevance to a better understanding of the physiopathology of generalized anxiety and panic disorder.


Subject(s)
Corticosterone/administration & dosage , Hippocampus/drug effects , Imipramine/administration & dosage , Neurogenesis/drug effects , Proto-Oncogene Proteins c-fos/metabolism , Amygdala/drug effects , Amygdala/metabolism , Animals , Doublecortin Domain Proteins , Doublecortin Protein , Hippocampus/metabolism , Hypothalamus/drug effects , Hypothalamus/metabolism , Male , Microtubule-Associated Proteins/metabolism , Neurogenesis/physiology , Neurons/drug effects , Neurons/metabolism , Neuropeptides/metabolism , Rats , Rats, Wistar
5.
Genet Mol Res ; 11(3): 3186-97, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-23007997

ABSTRACT

Coffee quality is directly related to the harvest and post harvest conditions. Non-uniform maturation of coffee fruits, combined with inadequate harvest, negatively affects the final quality of the product. Pectin methylesterase (PME) plays an important role in fruit softening due to the hydrolysis of methylester groups in cell wall pectins. In order to characterize the changes occurring during coffee fruit maturation, the enzymatic activity of PME was measured during different stages of fruit ripening. PME activity progressively increased from the beginning of the ripening process to the cherry fruit stage. In silico analysis of expressed sequence tags of the Brazilian Coffee Genome Project database identified 5 isoforms of PME. We isolated and cloned a cDNA homolog of PME for further characterization. CaPME4 transcription was analyzed in pericarp, perisperm, and endosperm tissues during fruit development and ripening as well as in other plant tissues. Northern blot analysis revealed increased transcription of CaPME4 in the pericarp 300 days after flowering. Low levels of CaPME4 mRNAs were observed in the endosperm 270 days after flowering. Expression of CaPME4 transcripts was strong in the branches and lower in root and flower tissues. We showed that CaPME4 acts specifically during the later stages of fruit ripening and possibly contributes to the softening of coffee fruit, thus playing a significant role in pectin degradation in the fruit pericarp.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Coffea/growth & development , Coffea/genetics , Fruit/growth & development , Fruit/genetics , Gene Expression Regulation, Plant , Amino Acid Sequence , Blotting, Northern , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Coffea/enzymology , Computational Biology , Conserved Sequence/genetics , Expressed Sequence Tags , Fruit/enzymology , Gene Expression Profiling , Gene Expression Regulation, Enzymologic , Gene Library , Genes, Plant/genetics , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...