Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38625552

ABSTRACT

Epilepsy is a condition marked by sudden, self-sustained, and recurring brain events, showcasing unique electro-clinical and neuropathological phenomena that can alter the structure and functioning of the brain, resulting in diverse manifestations. Antiepileptic drugs (AEDs) can be very effective in 30% of patients in controlling seizures. Several factors contribute to this: drug resistance, individual variability, side effects, complexity of epilepsy, incomplete understanding, comorbidities, drug interactions, and no adherence to treatment. Therefore, research into new AEDs is important for several reasons such as improved efficacy, reduced side effects, expanded treatment options, treatment for drug-resistant epilepsy, improved safety profiles, targeted therapies, and innovation and progress. Animal models serve as crucial biological tools for comprehending neuronal damage and aiding in the discovery of more effective new AEDs. The utilization of antioxidant agents that act on the central nervous system may serve as a supplementary approach in the secondary prevention of epilepsy, both in laboratory animals and potentially in humans. Chlorogenic acid (CGA) is a significant compound, widely prevalent in numerous medicinal and food plants, exhibiting an extensive spectrum of biological activities such as neuroprotection, antioxidant, anti-inflammatory, and analgesic effects, among others. In this research, we assessed the neuroprotective effects of commercially available CGA in Wistar rats submitted to lithium-pilocarpine-induced status epilepticus (SE) model. After 72-h induction of SE, rats received thiopental and were treated for three consecutive days (1st, 2nd, and 3rd doses). Next, brains were collected and studied histologically for viable cells in the hippocampus with staining for cresyl-violet (Nissl staining) and for degenerating cells with Fluoro-Jade C (FJC) staining. Moreover, to evaluate oxidative stress, the presence of malondialdehyde (MDA) and superoxide dismutase (SOD) was quantified. Rats administered with CGA (30 mg/kg) demonstrated a significant decrease of 59% in the number of hippocampal cell loss in the CA3, and of 48% in the hilus layers after SE. A significant reduction of 75% in the cell loss in the CA3, shown by FJC+ staining, was also observed with the administration of CGA (30 mg/kg). Furthermore, significant decreases of 49% in MDA production and 72% in the activity of SOD were seen, when compared to animals subjected to SE that received vehicle. This study introduces a novel finding: the administration of CGA at a dosage of 30 mg/kg effectively reduced oxidative stress induced by lithium-pilocarpine, with its effects lasting until the peak of neural damage 72 h following the onset of SE. Overall, the research and development of new AEDs are essential for advancing epilepsy treatment, improving patient outcomes, and ultimately enhancing the quality of life for individuals living with epilepsy.

2.
Sci Rep ; 14(1): 4069, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38374419

ABSTRACT

We investigated the participation of the nucleus of the tractus solitarius (NTS) in tonic‒clonic seizures and postictal antinociception control mediated by NMDA receptors, the role of NTS GABAergic interneurons and noradrenergic pathways from the locus coeruleus (LC) in these phenomena. The NTS-lateral nucleus reticularis paragigantocellularis (lPGi)-LC pathway was studied by evaluating neural tract tracer deposits in the lPGi. NMDA and GABAergic receptors agonists and antagonists were microinjected into the NTS, followed by pharmacologically induced seizures. The effects of LC neurotoxic lesions caused by DSP-4, followed by NTS-NMDA receptor activation, on both tonic‒clonic seizures and postictal antinociception were also investigated. The NTS is connected to lPGi neurons that send outputs to the LC. Glutamatergic vesicles were found on dendrites and perikarya of GABAergic interneurons in the NTS. Both tonic‒clonic seizures and postictal antinociception are partially dependent on glutamatergic-mediated neurotransmission in the NTS of seizing rats in addition to the integrity of the noradrenergic system since NMDA receptor blockade in the NTS and intrathecal administration of DSP-4 decrease the postictal antinociception. The GABAA receptor activation in the NTS decreases both seizure severity and postictal antinociception. These findings suggest that glutamatergic inputs to NTS-GABAergic interneurons, in addition to ascending and descending noradrenergic pathways from the LC, are critical for the control of both seizures and postictal antinociception.


Subject(s)
Benzylamines , Locus Coeruleus , Receptors, N-Methyl-D-Aspartate , Rats , Animals , Locus Coeruleus/physiology , Receptors, N-Methyl-D-Aspartate/metabolism , Medulla Oblongata/metabolism , Solitary Nucleus/metabolism , Norepinephrine/metabolism , Seizures/metabolism
3.
J Biochem Mol Toxicol ; 37(7): e23353, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37069807

ABSTRACT

Depression has a high rate of comorbidity with neuropathic pain. This study aims to investigate the effect of Mygalin, an acylpolyamine synthesized from a natural molecule in the hemolymph of the Acanthoscurria gomesiana spider, injected into the prelimbic (PrL) region of the medial prefrontal cortex on chronic neuropathic pain and depression comorbidity in rats. To investigate that comorbidity, neuropathic pain was induced by chronic constriction injury (CCI) of the sciatic nerve in male Wistar rats. The biotinylated biodextran amine (BDA) bidirectional neural tract tracer was microinjected into the PrL cortex to study brain connections. Rodents were further subjected to von Frey (mechanical allodynia), acetone (cold allodynia), and forced swim (depressive-like behavior) tests. BDA neural tract tracer-labeled perikarya were found in the dorsal columns of the periaqueductal gray matter (dPAG) and the dorsal raphe nucleus (DRN). Neuronal activity of DRN neurons decreased in CCI rats. However, PrL cortex treatment with Mygalin increased the number of spikes on DRN neurons. Mygalin treatment in the PrL cortex decreased both mechanical and cold allodynia and immobility behavior in CCI rats. PrL cortex treatment with N-methyl-D-aspartate (NMDA) receptor receptors attenuated the analgesic and antidepressive effects caused by Mygalin. The PrL cortex is connected with the dPAG and DRN, and Mygalin administration into the PrL increased the activity of DRN neurons. Mygalin in the PrL cortex produced antinociceptive and antidepressive-like effects, and the NMDA agonist reversed these effects.


Subject(s)
Neuralgia , Spiders , Rats , Male , Animals , Depression , Hyperalgesia , N-Methylaspartate/pharmacology , Rats, Wistar , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Receptors, N-Methyl-D-Aspartate , Comorbidity , Prefrontal Cortex
4.
Planta Med ; 89(2): 183-193, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36220097

ABSTRACT

Lychnophora is a genus of South American flowering plants in the daisy family, popularly known as "Brazilian arnica". It is used in traditional medicine as an anti-inflammatory and analgesic agent, whose active components are derived from chlorogenic acid (CGA) and C-flavonoids. Since the drugs currently used are ineffective to treat glaucoma, agents with antioxidant and anti-inflammatory properties may represent new alternatives in preventing cellular lesions in retinal ischemia. In this study, we report the neuroprotective effects of CGA and 4,5-di-O-[E]-caffeoylquinic (CQA) acid, isolated from Lychnophora plants, in a rodent glaucoma model. Wistar rats were administered intravitreally with 10 µg CGA or CGA, and then subjected to acute retinal ischemia (ISC) by increasing intraocular pressure (IPO) for 45 minutes followed (or not) by 15 minutes of reperfusion (I/R). Qualitative and quantitative analyses of neurodegeneration were performed using hematoxylin-eosin or Fluoro-Jade C staining protocols. All retinas submitted to ISC or I/R exhibited matrix disorganization, pyknotic nuclei, and pronounced vacuolization of the cytoplasm in the ganglion cell layer (GCL) and inner nuclear layer (INL). Pretreatment with CGA or CQA resulted in the protection of the retinal layers against matrix disorganization and a reduction in the number of vacuolized cells and pyknotic nuclei. Also, pretreatment with CGA or CQA resulted in a significant reduction in neuronal death in the GCL, the INL, and the outer nuclear layer (ONL) after ischemic insult. Our study demonstrated that CGA and CQA exhibit neuroprotective activities in retinas subjected to ISC and I/R induced by IPO in Wistar rats.


Subject(s)
Arnica , Glaucoma , Neuroprotective Agents , Retinal Diseases , Rats , Animals , Chlorogenic Acid/pharmacology , Chlorogenic Acid/therapeutic use , Rats, Wistar , Brazil , Retinal Diseases/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Anti-Inflammatory Agents , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Glaucoma/drug therapy
5.
Biochem Pharmacol ; 193: 114786, 2021 11.
Article in English | MEDLINE | ID: mdl-34571003

ABSTRACT

Epilepsy is a complex neurological syndrome characterized by seizures resulting from neuronal hyperexcitability and sudden and synchronized bursts of electrical discharges. Impaired astrocyte function that results in glutamate excitotoxicity has been recognized to play a key role in the pathogenesis of epilepsy. While there are 26 drugs marketed as anti-epileptic drugs no current treatments are disease modifying as they only suppress seizures rather than the development and progression of epilepsy. Excitatory amino acid transporters (EAATs) are critical for maintaining low extracellular glutamate concentrations and preventing excitotoxicity. When extracellular glutamate concentrations rise to abnormal levels, glutamate receptor overactivation and the subsequent excessive influx of calcium into the post-synaptic neuron can trigger cell death pathways. In this review we discuss targeting EAAT2, the predominant glutamate transporter in the CNS, as a promising approach for developing therapies for epilepsy. EAAT2 upregulation via transcriptional and translational regulation has proven successful in vivo in reducing spontaneous recurrent seizures and offering neuroprotective effects. Another approach to regulate EAAT2 activity is through positive allosteric modulation (PAM). Novel PAMs of EAAT2 have recently been identified and are under development, representing a promising approach for the advance of novel therapeutics for epilepsy.


Subject(s)
Anticonvulsants/pharmacology , Epilepsy/drug therapy , Epilepsy/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Glutamic Acid/metabolism , Animals , Anticonvulsants/chemistry , Excitatory Amino Acid Transporter 2/genetics , Gene Expression Regulation/drug effects , Humans
6.
ACS Chem Neurosci ; 11(11): 1573-1596, 2020 06 03.
Article in English | MEDLINE | ID: mdl-32343555

ABSTRACT

The South American social spider Parawixia bistriata produces a venom containing complex organic compounds with intriguing biological activities. The crude venom leads to paralysis in termites and stimulates l-glutamate uptake and inhibits GABA uptake in rat brain synaptosomes. Glutamate is the major neurotransmitter at the insect neuromuscular junction and at the mammalian central nervous system, suggesting a modulation of the glutamatergic system by the venom. Parawixin1, 2, and 10 (Pwx1, 2 and 10) are HPLC fractions that demonstrate this bioactivity. Pwx1 stimulates l-glutamate uptake through the main transporter in the brain, EAAT2, and is neuroprotective in in vivo glaucoma models. Pxw2 inhibits GABA and glycine uptake in synaptosomes and inhibits seizures and neurodegeneration, and Pwx10 increases l-glutamate uptake in synaptosomes and is neuroprotective and anticonvulsant, shown in in vivo epilepsy models. Herein, we investigated the low molecular mass compounds in this venom and have found over 20 small compounds and 36 unique acylpolyamines with and without amino acid linkers. The active substances in fractions Pwx1 and Pwx2 require further investigation. We elucidated and confirmed the structure of the active acylpolyamine in Pwx10. Both fraction Pwx10 and the synthesized component enhance the activity of transporters EAAT1 and EAAT2, and, importantly, offer in vitro neuroprotection against excitotoxicity in primary cultures. These data suggest that compounds with this mechanism could be developed into therapies for disorders in which l-glutamate excitotoxicity is involved.


Subject(s)
Spider Venoms , Animals , Anticonvulsants/therapeutic use , Excitatory Amino Acid Transporter 2 , Glutamic Acid , Neuroprotection , Rats , Synaptosomes
7.
Primates ; 61(2): 169-174, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31832889

ABSTRACT

Conservation behavior involves the application of general principles of animal behavior for solving conservation problems. In primates, adoption of infants has been reported in several species and consists of an individual other than the biological parents taking primary care of them. Based on cases of adoption reported in howler monkeys (genus Alouatta), in the present study we facilitated the adoption of an orphaned and temporarily captive male infant by an unrelated adult female black-and-gold howler monkey (A. caraya), in the wild. The adoption process involved presenting the orphaned infant, inside a cage, to the female in the forest fragment that she occupied. We recorded the interactions between the individuals, and decided to open the cage. The female became the sole caregiver of the orphan, providing him with protection, transportation, and feeding, although she did not nurse him. The follow-up of these same individuals between 2006 and 2007 confirmed the success of the adoption. These findings indicate that carefully managed adoption can be a possible management strategy for the conservation and the welfare of howler monkeys in both nature and captivity.


Subject(s)
Alouatta caraya/physiology , Behavior, Animal , Animals , Brazil , Conservation of Natural Resources , Female , Male , Social Behavior
8.
CNS Neurol Disord Drug Targets ; 18(8): 631-642, 2019.
Article in English | MEDLINE | ID: mdl-31530268

ABSTRACT

BACKGROUND & OBJECTIVE: Cervical Spondylotic Myelopathy (CSM) is one of the most serious spinal cord disorders in adults. Pharmacological modulation of ion channels is a common strategy to interfere with CSM and prevent neuronal damage. METHODS: Here, we investigated the effects of Jingshu Keli (JSKL), a traditional Chinese herbal formula, on CSM-related gait abnormality, mechanical allodynia and thermal hyperalgesia, and assessed the neuronal mechanisms of JSKL on cultured brainstem cells. Behavioral tests and patch clamp recordings were performed to make this assessment. RESULTS: In our study, we found that JSKL significantly recovered the gait performance (P<0.001) and decreased the levels of mechanical pain in 18.9% (P<0.01) and thermal pain in 18.1% (P<0.05). Further investigation suggested that JSKL and its containing ginsenoside Rb1 (GRb1), notoginsenoside R1 (NGR1) reduced the action potential frequency in 38.5%, 27.2%, 25.9%, and hyperpolarized resting membrane potential in 15.0%, 13.8%, 12.1%, respectively. Kir channels, not KV channels and KCa channels, were the major intermediate factors achieving treatment effects. Finally, immunostaining results showed that the phosphorylation of Kir3.1 was promoted, whereas the total expression level did not change. CONCLUSION: Our study reveals a novel strategy of treating CSM by using Traditional Chinese Medicines (TCMs) containing active components.


Subject(s)
Drugs, Chinese Herbal/therapeutic use , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Gait/drug effects , Ginsenosides/therapeutic use , Hyperalgesia/drug therapy , Spinal Cord Diseases/drug therapy , Animals , Disease Models, Animal , Drugs, Chinese Herbal/pharmacology , Ginsenosides/pharmacology , Hyperalgesia/metabolism , Male , Medicine, Chinese Traditional , Pain Measurement , Rats , Rats, Sprague-Dawley , Spinal Cord Diseases/metabolism
9.
Article in English | MEDLINE | ID: mdl-31131006

ABSTRACT

BACKGROUND: Studies on toad poison are relevant since they are considered a good source of toxins that act on different biological systems. Among the molecules found in the toad poison, it can be highlighted the cardiotonic heterosides, which have a known mechanism that inhibit Na+/K+-ATPase enzyme. However, these poisons have many other molecules that may have important biological actions. Therefore, this work evaluated the action of the low molecular weight components from Rhinella schneideri toad poison on Na+/K+-ATPase and their anticonvulsive and / or neurotoxic effects, in order to detect molecules with actions of biotechnological interest. METHODS: Rhinella schneideri toad (male and female) poison was collected by pressuring their parotoid glands and immediately dried and stored at -20 °C. The poison was dialysed and the water containing the low molecular mass molecules (< 8 kDa) that permeate the dialysis membrane was collected, frozen and lyophilized, resulting in the sample used in the assays, named low molecular weight fraction (LMWF). Na+/K+ ATPase was isolated from rabbit kidneys and enzyme activity assays performed by the quantification of phosphate released due to enzyme activity in the presence of LMWF (1.0; 10; 50 and 100 µg/mL) from Rhinella schneideri poison. Evaluation of the L-Glutamate (L-Glu) excitatory amino acid uptake in brain-cortical synaptosomes of Wistar rats was performed using [3H]L-glutamate and different concentration of LMWF (10-5 to 10 µg/µL). Anticonvulsant assays were performed using pentylenetetrazole (PTZ) and N-methyl-D-aspartate (NMDA) to induce seizures in Wistar rats (n= 6), which were cannulated in the lateral ventricle and treated with different concentration of LMWF (0.25; 0.5; 1.0; 2.0; 3.0 and 4.0 µg/µL) 15 min prior to the injection of the seizure agent. RESULTS: LMWF induced a concentration-dependent inhibition of Na+/K+-ATPase (IC50% = 107.5 µg/mL). The poison induces an increased uptake of the amino acid L-glutamate in brain-cortical synaptosomes of Wistar rats. This increase in the L-glutamate uptake was observed mainly at the lowest concentrations tested (10-5 to 10-2 µg/µL). In addition, this fraction showed a very relevant central neuroprotection on seizures induced by PTZ and NMDA. CONCLUSIONS: LMWF from Rhinella schneideri poison has low molecular weight compounds, which were able to inhibit Na+/K+-ATPase activity, increase the L-glutamate uptake and reduced seizures induced by PTZ and NMDA. These results showed that LMWF is a rich source of components with biological functions of high medical and scientific interest.

10.
Article in English | MEDLINE | ID: mdl-31131008

ABSTRACT

BACKGROUND: L-Glutamate (L-Glu), the major excitatory neurotransmitter in the mammalian Central Nervous System (CNS), is essential to cognitive functions. However, when L-Glu is accumulated in large concentrations at the synaptic cleft, it can induce excitotoxicity that results in secondary damage implicated in many neurological disorders. Current therapies for the treatment of neurological disorders are ineffective and have side effects associated with their use; therefore, there is a need to develop novel treatments. In this regard, previous studies have shown that neuroactive compounds obtained from the venom of the spider Parawixia bistriata have neuroprotective effects in vitro and in vivo. In this sense, this work aimed to evaluate potential neuroprotective effects of fraction RT10, obtained from this spider venom, on primary cultures of neuron and glial cells subjected to glutamate excitotoxicity insults. METHODS: Primary cultures of neurons and glia were obtained from the cerebral tissue of 1-day-old postnatal Wistar rats. After 7 days in vitro (DIV), the cultures were incubated with fraction RT10 (0.002; 0.02; 0.2 and 2 µg/µL) or riluzole (100 µM) for 3-hours before application of 5 mM L-Glu. After 12 hours, the resazurin sodium salt (RSS) test was applied to measure metabolic activity and proliferation of living cells, whereas immunocytochemistry for MAP2 was performed to measure neuronal survival. In addition, the cells were immunolabeled with NeuN and GFAP in baseline conditions. RESULTS: In the RSS tests, we observed that pre-incubation with RT10 before the excitotoxic insults from L-Glu resulted in neuroprotection, shown by a 10% reduction in the cell death level. RT10 was more effective than riluzole, which resulted in a cell-death reduction of 5%. Moreover, qualitative analysis of neuronal morphology (by MAP2 staining, expressed as fluorescence intensity (FI), an indirect measure of neuronal survival) indicate that RT10 reduced the toxic effects of L-Glu, as shown by a 38 % increase in MAP2 fluorescence when compared to L-Glu insult. On the other hand, the riluzole treatment resulted in 17% increase of MAP2 fluorescence; therefore, the neuroprotection from RT10 was more efficacious. CONCLUSION: RT10 fraction exhibits neuroprotective effects against L-Glu excitotoxicity in neuron-glia cultured in vitro.

11.
Toxins (Basel) ; 10(12)2018 11 22.
Article in English | MEDLINE | ID: mdl-30469496

ABSTRACT

Epilepsy is considered as one of the major disabling neuropathologies. Almost one third of adult patients with temporal lobe epilepsy (TLE) do not respond to current antiepileptic drugs (AEDs). Additionally, most AEDs do not have neuroprotective effects against the inherent neurodegenerative process underlying the hippocampal sclerosis on TLE. Dysfunctions in the GABAergic neurotransmission may contribute not only to the onset of epileptic activity but also constitute an important system for therapeutic approaches. Therefore, molecules that enhance GABA inhibitory effects could open novel avenues for the understanding of epileptic plasticity and for drug development. Parawixin2, a compound isolated from Parawixia bistriata spider venom, inhibits both GABA and glycine uptake and has an anticonvulsant effect against a wide range of chemoconvulsants. The neuroprotective potential of Parawixin2 was analyzed in a model of TLE induced by a long-lasting Status Epilepticus (SE), and its efficiency was compared to well-known neuroprotective drugs, such as riluzole and nipecotic acid. Neuroprotection was assessed through histological markers for cell density (Nissl), astrocytic reactivity (GFAP) and cell death labeling (TUNEL), which were performed 24 h and 72 h after SE. Parawixin2 treatment resulted in neuroprotective effects in a dose dependent manner at 24 h and 72 h after SE, as well as reduced reactive astrocytes and apoptotic cell death. Based on these findings, Parawixin2 has a great potential to be used as a tool for neuroscience research and as a probe to the development of novel GABAergic neuroprotective agents.


Subject(s)
Epilepsy, Temporal Lobe/drug therapy , Hippocampus/drug effects , Neuroprotective Agents/therapeutic use , Spider Venoms/therapeutic use , Urea/analogs & derivatives , Animals , Disease Models, Animal , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Male , Neurons/drug effects , Neurons/pathology , Rats, Wistar , Urea/therapeutic use
12.
Primates ; 59(6): 541-547, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30238425

ABSTRACT

Fecundity in female primates is influenced by the nutritional condition. If when translocated howler monkeys exhibit the same breeding patterns as non-translocated members of the same genus, it is an indication that the translocated monkeys have become well adapted to their release site and that they are likely in good nutritional condition. The objective of this study was therefore to investigate this pattern by recording copulations (over 5 years) and births (over 7 years) after the translocation of a pair of black-and-gold howler monkeys (Alouatta caraya) and to evaluate their gestation period, seasonality of births, and intervals between births. The pair was released in November 2009 on the campus of the University of São Paulo in Ribeirão Preto, São Paulo State, Brazil. Data on copulations were collected from January 2010 to March 2011 and from January 2012 to December 2014. Births were collected from January 2010 to December 2016. During the 5-year observation period, 25 copulations were recorded. Seven births were recorded over a period of 7 years, which included reproduction of the offspring of the translocated pair. Births occurred in the dry season between April and August. The interval between births was approximately 1 year. Our data provide insight into the reproduction of howler monkeys that have been translocated to a new habitat. Translocation can provide a valuable approach for rescuing or restoring Alouatta, whose populations have been detrimentally impacted by long-term habitat fragmentation.


Subject(s)
Alouatta/physiology , Copulation , Fertility , Forests , Parturition , Animals , Brazil , Ecosystem , Female , Geography , Male , Nutritional Physiological Phenomena , Pregnancy , Reproduction , Seasons
13.
Toxins (Basel) ; 9(9)2017 08 25.
Article in English | MEDLINE | ID: mdl-28841161

ABSTRACT

(1) Background: Temporal lobe epilepsy (TLE) is the most common type of epilepsy in adults. It is also the one with the highest percentage of drug-resistance to the current available anti-epileptic drugs (AED). Additionaly, most antiepileptic drugs are only able to control seizures in epileptogenesis, but do not decrease the hippocampal neurodegenerative process. TLE patients have a reduced population of interneuronal cells, which express Parvalbumin (PV) proteins. This reduction is directly linked to seizure frequency and severity in the chronic period of epilepsy. There is therefore a need to seek new therapies with a disease-modifying profile, and with efficient antiepileptic and neuroprotective properties. Parawixin2, a compound isolated from the venom of the spider Parawixia bistriata, has been shown to inhibit GABA transporters (GAT) and to have acute anticonvulsant effects in rats. (2) Methods: In this work, we studied the effects of Parawixin2 and Tiagabine (an FDA- approved GAT inhibitor), and compared these effects in a TLE model. Rats were subjected to lithium-pilocarpine TLE model and the main features were evaluated over a chronic period including: (a) spontaneous recurrent seizures (SRS), (b) neuronal loss, and (c) PV cell density in different regions of the hippocampus (CA1, CA3, DG and Hilus). (3) Results: Parawixin2 treatment reduced SRS frequency whereas Tiagabine did not. We also found a significant reduction in neuronal loss in CA3 and in the hilus regions of the hippocampus, in animals treated with Parawixin2. Noteworthy, Parawixin2 significantly reversed PV cell loss observed particularly in DG layers. (4) Conclusions: Parawixin2 exerts a promising neuroprotective and anti-epileptic effect and has potential as a novel agent in drug design.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy, Temporal Lobe/drug therapy , Neuroprotective Agents/therapeutic use , Neurotransmitter Uptake Inhibitors/therapeutic use , Spider Venoms/therapeutic use , Urea/analogs & derivatives , Animals , Anticonvulsants/pharmacology , Disease Models, Animal , Epilepsy, Temporal Lobe/chemically induced , Hippocampus/drug effects , Lithium , Male , Neurons/drug effects , Neuroprotective Agents/pharmacology , Neurotransmitter Uptake Inhibitors/pharmacology , Nipecotic Acids/pharmacology , Nipecotic Acids/therapeutic use , Pilocarpine , Rats, Wistar , Spider Venoms/pharmacology , Tiagabine , Urea/pharmacology , Urea/therapeutic use
14.
J Biochem Mol Toxicol ; 31(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28621878

ABSTRACT

Arthropod venoms are sources of molecules that may be useful tools to investigate molecular mechanisms of putative new medicines and laboratory drugs. Here we show the effects of the compound agelaiatoxin-8 (AVTx8), isolated from Agelaia vicina venom, on γ-aminobutyric acid (GABA) neurotransmission in rat brain synaptosomes. Analysis reveals that AvTx8 is composed by 14 amino acid residues with a molecular weight (MW) of 1567 Da. AvTx8 increased GABA release and inhibited GABA uptake in synaptosomes from rat cerebral cortex. AvTx8 inhibited GABA uptake and increased GABA release in the presence of Ca+ , Na+ , and K+ channel blockers, suggesting that it acts directly on GABA transporters. In addition, AvTx8 significantly decreases GABA binding in synaptic membranes from rat brain cortex, suggesting that it also modulates the activity of GABA receptors. Moreover, AvTx8 decreased GAT-1- and GAT-3-mediated GABA uptake in transfected COS-7 cells. Accordingly, we suggest that AvTx8 modulates GABA neurotransmission and might provide a novel entry point for identifying a new class of GABA-modulating neuroprotective drugs.


Subject(s)
Synaptic Membranes/metabolism , Synaptic Transmission/drug effects , Synaptosomes/metabolism , Wasp Venoms , Wasps/chemistry , gamma-Aminobutyric Acid/metabolism , Animals , COS Cells , Chlorocebus aethiops , Ion Channels/antagonists & inhibitors , Ion Channels/metabolism , Rats , Rats, Wistar , Synaptic Membranes/pathology , Synaptosomes/pathology , Wasp Venoms/chemistry , Wasp Venoms/isolation & purification , Wasp Venoms/toxicity
15.
Toxins (Basel) ; 9(1)2016 12 23.
Article in English | MEDLINE | ID: mdl-28025529

ABSTRACT

Natural products, sources of new pharmacological substances, have large chemical diversity and architectural complexity. In this context, some toxins obtained from invertebrate venoms have anticonvulsant effects. Epilepsy is a neurological disorder that affects about 65 million people worldwide, and approximately 30% of cases are resistant to pharmacological treatment. Previous studies from our group show that the denatured venom of the ant Dinoponera quadriceps (Kempt) protects mice against bicuculline (BIC)-induced seizures and death. The aim of this study was to investigate the anticonvulsant activity of compounds isolated from D. quadriceps venom against seizures induced by BIC in mice. Crude venom was fractionated by high-performance liquid chromatography (HPLC) resulting in six fractions referred to as DqTx1-DqTx6. A liquid chromatography-mass spectrometry (LC/MS) analysis revealed a major 431 Da compound in fractions DqTx1 and DqTx2. Fractions DqTx3 and DqTx4 showed a compound of 2451 Da and DqTx5 revealed a 2436 Da compound. Furthermore, the DqTx6 fraction exhibited a major component with a molecular weight of 13,196 Da. Each fraction (1 mg/mL) was microinjected into the lateral ventricle of mice, and the animals were observed in an open field. We did not observe behavioral alterations when the fractions were given alone. Conversely, when the fractions were microinjected 20 min prior to the administration of BIC (21.6 nM), DqTx1, DqTx4, and DqTx6 fractions increased the latency for onset of tonic-clonic seizures. Moreover, all fractions, except DqTx5, increased latency to death. The more relevant result was obtained with the DqTx6 fraction, which protected 62.5% of the animals against tonic-clonic seizures. Furthermore, this fraction protected 100% of the animals from seizure episodes followed by death. Taken together, these findings indicate that compounds from ant venom might be a potential source of new anticonvulsants molecules.


Subject(s)
Ant Venoms/pharmacology , Anticonvulsants/pharmacology , Ants , Seizures/drug therapy , Animals , Ant Venoms/chemistry , Anticonvulsants/chemistry , Bicuculline , Disease Models, Animal , Male , Mice , Seizures/chemically induced
17.
Pharmacogn Mag ; 11(43): 579-85, 2015.
Article in English | MEDLINE | ID: mdl-26246735

ABSTRACT

BACKGROUND: Parawixia bistriata is a semi-colonial spider found mainly in southeastern of Brazil. Parawixin 10 (Pwx 10) a compound isolated from this spider venom has been demonstrated to act as neuroprotective in models of injury regulating the glutamatergic neurotransmission through glutamate transporters. OBJECTIVES: The aim of this work was to evaluate the neuroprotective effect of Pwx 10 in a rat model of excitotoxic brain injury by N-methyl-D-aspartate (NMDA) injection. MATERIAL AND METHODS: Male Wistar rats have been used, submitted to stereotaxic surgery for saline or NMDA microinjection into dorsal hippocampus. Two groups of animals were treated with Pwx 10. These treated groups received a daily injection of the Pwx 10 (2.5 mg/µL) in the right lateral ventricle into rats pretreated with NMDA, always at the same time, each one starting the treatment 1 h or 24 h. Nissl staining was performed for evaluating the extension and efficacy of the NMDA injury and the neuroprotective effect of Pwx 10. RESULTS: The treatment with Pwx 10 showed neuroprotective effect, being most pronounced when the compound was administrated from 1 h after NMDA in all hippocampal subfields analyzed (CA1, CA3 and hilus). CONCLUSION: These results indicated that Pwx 10 may be a good template to develop therapeutic drugs for treating neurodegenerative diseases, reinforcing the importance of continuing studies on its effects in the central nervous system.

18.
Cent Nerv Syst Agents Med Chem ; 13(2): 122-31, 2013 Jun.
Article in English | MEDLINE | ID: mdl-24195634

ABSTRACT

Polyamines are compounds that interact with ionotropic receptors, mainly modulating the NMDA receptor, which is strictly related to many neurologic diseases such as epilepsy. Consequently, polyamines rise as potential neuropharmacological tools in the prospection of new therapeutic drugs. In this paper, we report on the biological activity of synthetic polyamine Mygalin, which was tested as an anticonvulsant in model of chemically induced seizures. Male Wistar rats were injected with vehicle, diazepam, MK-801 or Mygalin at different doses followed by Pentylenetetrazole or N-Methyl-D-Aspartate administration. Mygalin presented protection against seizures induced by both NMDA injections and PTZ administration by 83.3% and 16.6%, respectively. Moreover, it prolonged the onset of tonic-clonic seizures induced by PTZ. Furthermore, it was tested in neuroethological schedule evaluating possible side-effects and it presented mild changes in Open Field, Rotarod and Morris Water Maze tests when compared to available anticonvulsant drugs. The mechanism underlying the anticonvulsant effect of Mygalin is noteworthy of further investigation, nevertheless, based on these findings, we hypothesize that it may be wholly or in part due to a possible NMDA receptor antagonism. Altogether, the results demonstrate that Mygalin has an anticonvulsant activity that may be an important tool in the study of prospection of therapeutics in epilepsy neuropharmacology.


Subject(s)
Anticonvulsants/therapeutic use , Epilepsy, Tonic-Clonic/drug therapy , Spermidine/analogs & derivatives , Acute Disease , Animals , Anticonvulsants/pharmacology , Anticonvulsants/toxicity , Cognition/drug effects , Diazepam/therapeutic use , Dizocilpine Maleate/therapeutic use , Drug Evaluation, Preclinical , Epilepsy, Tonic-Clonic/chemically induced , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Amino Acid Antagonists/therapeutic use , Excitatory Amino Acid Antagonists/toxicity , Exploratory Behavior/drug effects , Locomotion/drug effects , Male , Maze Learning/drug effects , N-Methylaspartate/toxicity , Pentylenetetrazole/toxicity , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Rotarod Performance Test , Spermidine/pharmacology , Spermidine/therapeutic use , Spermidine/toxicity
19.
Epilepsy Behav ; 22(2): 158-64, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21763206

ABSTRACT

The neurobiological activity of Parawixin 10, isolated from Parawixia bistriata spider venom, was investigated. Cannulas were implanted in the lateral ventricles of Wistar rats (200-250 g, n=6-8 per group) to perform anticonvulsant and behavioral assays, and synaptosomes from cerebral cortices of male Wistar rats were used for neurochemical studies. The results indicate that pretreatment with Parawixin 10 prevents the onset of seizures induced with kainic acid, N-methyl-D-aspartate, and pentylenetetrazole in a dose-response manner. Lower doses of Parawixin 10 significantly increased the latency to onset of kainic acid-, pentylenetetrazole-, and N-methyl-D-aspartate-induced seizures. There were maximum increases of 79% in L-[(3)H]glutamine uptake and 40% in [(3)H]glycine uptake; [(3)H]GABA uptake did not change. The findings demonstrate that this novel compound from P. bistriata venom exerts a pharmacological effect on the glutamatergic and glycinergic systems.


Subject(s)
Anticonvulsants/chemistry , Anticonvulsants/therapeutic use , Seizures/drug therapy , Spider Venoms/chemistry , Spider Venoms/therapeutic use , Analysis of Variance , Animals , Ataxia/drug therapy , Ataxia/etiology , Cerebral Cortex/ultrastructure , Chromatography, High Pressure Liquid , Disease Models, Animal , Dose-Response Relationship, Drug , Excitatory Amino Acid Agonists/toxicity , Glutamic Acid/metabolism , Glycine/drug effects , Kainic Acid/toxicity , Male , Motor Activity/drug effects , N-Methylaspartate/toxicity , Rats , Rats, Wistar , Reaction Time/drug effects , Seizures/chemically induced , Seizures/complications , Seizures/pathology , Synaptosomes/drug effects , Synaptosomes/metabolism , Tritium/metabolism , gamma-Aminobutyric Acid/metabolism
20.
Epilepsy Behav ; 20(3): 441-6, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21277832

ABSTRACT

Neural mechanisms underlying the onset and maintenance of epileptic seizures involve alterations in inhibitory and/or excitatory neurotransmitter pathways. Thus, the prospecting of novel molecules from natural products that target both inhibition and excitation systems has deserved interest in the rational design of new anticonvulsants. We isolated the alkaloids (+)-erythravine and (+)-11-α-hydroxy-erythravine from the flowers of Erythrina mulungu and evaluated the action of these compounds against chemically induced seizures in rats. Our results showed that the administration of different doses of (+)-erythravine inhibited seizures evoked by bicuculline, pentylenetetrazole, and kainic acid at maximum of 80, 100, and 100%, respectively, whereas different doses of (+)-11-α-hydroxy-erythravine inhibited seizures at a maximum of 100% when induced by bicuculline, NMDA, and kainic acid, and, to a lesser extent, PTZ (60%). The analysis of mean latency to seizure onset of nonprotected animals, for specific doses of alkaloids, showed that (+)-erythravine increased latencies to seizures induced by bicuculline. Although (+)-erythravine exhibited very weak anticonvulsant action against seizures induced by NMDA, this alkaloid increased the latency in this assay. The increase in latency to onset of seizures promoted by (+)-11-α-hydroxy-erythravine reached a maximum of threefold in the bicuculline test. All animals were protected against death when treated with different doses of (+)-11-α-hydroxy-erythravine in the tests using the four chemical convulsants. Identical results were obtained when using (+)-erythravine in the tests of bicuculline, NMDA, and PTZ, and, to a lesser extent, kainic acid. Therefore, these data validate the anticonvulsant properties of the tested alkaloids, which is of relevance in consideration of the ethnopharmacological/biotechnological potential of E. mulungu.


Subject(s)
Anticonvulsants/therapeutic use , Fabaceae , Flowers/chemistry , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Phytotherapy/methods , Plant Extracts/therapeutic use , Seizures/drug therapy , Animals , Bicuculline/toxicity , Chi-Square Distribution , Disease Models, Animal , Dose-Response Relationship, Drug , Fabaceae/chemistry , Heterocyclic Compounds, 4 or More Rings/chemistry , Injections, Intraventricular , Kainic Acid/toxicity , Male , N-Methylaspartate/toxicity , Pentylenetetrazole/toxicity , Rats , Rats, Wistar , Reaction Time/drug effects , Seizures/chemically induced
SELECTION OF CITATIONS
SEARCH DETAIL
...