Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
Psychopharmacology (Berl) ; 241(4): 717-726, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37968530

ABSTRACT

RATIONALE: Cabergoline (CAB) is an ergot derivative typically prescribed for the treatment of hyperprolactinemia. It suppresses the release of prolactin through agonist actions on dopamine (DA) D2 receptors; however, it possesses binding affinity for other DA and 5-HT receptors. Side effects that exacerbate valvular heart disease can occur with high doses. OBJECTIVE: The present study examined the acute, subchronic, and chronic dose-response effects of CAB and a derivative dimethylcabergoline (DMC) which acts as an antagonist instead of agonist at 5-HT 2B receptors, on appetitive and consummatory sexual behaviors of male rats. METHODS: CAB (0, 0.03, 0.15, or 0.3 mg/kg/ml) was administered daily to sexually experienced male rats (N = 10/dose) by oral gavage for a total of 68 days. Sexual behavior was tested every 4 days during this period for a total of 16 trials. On the 17th trial, rats were administered their dose of CAB, and 4 h after were overdosed with sodium pentobarbital, perfused intracardially, and their brains processed for Fos immunohistochemistry. DMC (0, 0.03, 0.15, 0.3 mg/kg/ml) was administered daily to sexually experienced male rats (N = 10/dose) by oral gavage for a total of 36 days. Sexual behavior was tested every 4 days for a total of 9 trials. RESULTS: CAB increased anticipatory level changes, intromissions, and ejaculations significantly across all timepoints, with the medium and high doses being most potent. The medium and high doses also increased Fos protein significantly within the medial preoptic area, whereas in the nucleus accumbens shell, the low and medium doses decreased Fos protein but the high dose increased it significantly from control. Similar to CAB, the medium and high doses of DMC increased the number of ejaculations significantly. Rats in all drug dose groups appeared healthy for the duration of the experiments. CONCLUSIONS: Both CAB and DMC facilitate ejaculations, and CAB further facilitates measures of anticipatory sexual motivation and intromissions. These data suggest that both could be used as treatments for sexual arousal disorders and ejaculation/orgasm disorders with little or no untoward side effects at low doses.


Subject(s)
Copulation , Sexual Behavior, Animal , Rats , Male , Animals , Cabergoline/pharmacology , Motivation , Brain , Gonadal Steroid Hormones , Receptors, Dopamine D2
2.
J Ocul Pharmacol Ther ; 39(5): 332-346, 2023 06.
Article in English | MEDLINE | ID: mdl-37200453

ABSTRACT

Purpose: To evaluate the pharmacokinetic profiles of the ocular hypotensive agent QLS-101, a novel ATP-sensitive potassium channel opening prodrug, and its active moiety levcromakalim, following topical ophthalmic and intravenous dosing of normotensive rabbits and dogs. Methods: Dutch belted rabbits (n = 85) and beagle dogs (n = 32) were dosed with QLS-101 (0.16-3.2 mg/eye/dose) or formulation buffer for 28 days. Pharmacokinetic profiles of QLS-101 and levcromakalim were evaluated in ocular tissues and blood by LC-MS/MS. Tolerability was assessed by clinical and ophthalmic examinations. Maximum systemic tolerated dose was evaluated in beagle dogs (n = 2) following intravenous bolus administrations of QLS-101 (0.05 to 5 mg/kg). Results: Plasma analysis following topical dosing of QLS-101 (0.8-3.2 mg/eye/dose) for 28 days indicated an elimination half-life (T1/2) of 5.50-8.82 h and a corresponding time (Tmax) range of 2-12 h in rabbits, and a T1/2 of 3.32-6.18 h with a Tmax range of 1-2 h in dogs. Maximum tissue concentration (Cmax) values ranged from 54.8-540 (day 1) to 50.5-777 ng/mL (day 28) in rabbits, and 36.5-166 (day 1) to 47.0-147 ng/mL (day 28) in dogs. Levcromakalim plasma T1/2 and Tmax were similar to QLS-101, while Cmax was consistently lower. Topical ophthalmic delivery of QLS-101 was well tolerated in both species, with sporadic mild ocular hyperemia noted in the group treated with the highest concentration (3.2 mg/eye/dose). Following topical ophthalmic dosing, QLS-101 and levcromakalim were found primarily in the cornea, sclera, and conjunctiva. Maximum tolerated dose was determined to be 3 mg/kg. Conclusions: QLS-101 was converted to its active moiety levcromakalim and showed characteristic absorption, distribution, and safety profiles of a well-tolerated prodrug.


Subject(s)
Prodrugs , Animals , Rabbits , Dogs , Cromakalim , Chromatography, Liquid , Prodrugs/pharmacokinetics , Prodrugs/therapeutic use , Tandem Mass Spectrometry , Cornea , Antihypertensive Agents/therapeutic use , Administration, Topical , Ophthalmic Solutions
3.
J Pharmacol Exp Ther ; 387(1): 18-26, 2023 10.
Article in English | MEDLINE | ID: mdl-36931644

ABSTRACT

Previous studies show ATP-sensitive potassium (KATP) channel openers can reduce hypersensitivity associated with chronic pain models in rodents, and reduce morphine tolerance. Many agonists of KATP channels are not soluble in physiologically relevant vehicles, requiring adaptation for clinical use. This study compared the antinociceptive activity of novel KATP channel targeting prodrugs, CKLP1, CKLP2, and CF3-CKLP. These prodrugs are activated by endogenous alkaline phosphatase enzymes present in the peripheral and central nervous systems. Analgesic capabilities of intrathecally injected prodrugs were tested in rodent models of spinal nerve ligation (SNL) and complete Freund's adjuvant (CFA) as models for neuropathic and inflammatory pain, respectively. CKLP1 and CKLP2 significantly increased mechanical paw withdrawal thresholds 1-2 hours after intrathecal administration in the SNL model, but all three prodrugs were able to attenuate hypersensitivity up to 7 days after CFA treatment. The reduction of opioid tolerance and opioid-induced hypersensitivity in mice treated chronically with morphine was significantly reduced in CKLP1 and CKLP2 treated animals. Prodrug cleavage was confirmed in mouse spinal cords using liquid chromatography. These studies may aid in the further development of KATP channel prodrugs for use in treatments of chronic pain, opioid tolerance, and withdrawal. SIGNIFICANCE STATEMENT: The cromakalim prodrugs, CKLP1, CKLP2, and CF3-CKLP1 reduced hypersensitivity in inflammatory and neuropathic pain models in male and female mice. CKLP1 and CKLP2 also reduced morphine-induced hypersensitivity in a mouse model of chronic morphine exposure. CKLP2 reduced jumping and rearing behaviors after naloxone-induced precipitated morphine withdrawal. Taken together, CKLP2 demonstrates the potential for development as a non-opioid analgesic drug.


Subject(s)
Chronic Pain , Hypersensitivity , Neuralgia , Prodrugs , Mice , Male , Female , Animals , Morphine/pharmacology , Morphine/therapeutic use , Prodrugs/pharmacology , Prodrugs/therapeutic use , Analgesics, Opioid/pharmacology , Analgesics, Opioid/therapeutic use , Drug Tolerance/physiology , Neuralgia/chemically induced , Neuralgia/drug therapy , Adenosine Triphosphate
4.
Invest Ophthalmol Vis Sci ; 63(4): 26, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35486069

ABSTRACT

Purpose: To characterize the ocular hypotensive and pharmacological properties of QLS-101, a novel ATP-sensitive potassium (KATP) channel opening prodrug. Methods: Ocular hypotensive properties of QLS-101 were evaluated by measuring IOP with a handheld rebound tonometer after daily topical ocular instillation of 0.2% (n = 5) or 0.4% QLS-101 (n = 10) in C57BL/6J mice. KATP channel specificity was characterized in HEK-293 cells stably expressing human Kir6.2/SUR2B subunits and assessed for off-target interactions using a receptor binding screen. Conversion of QLS-101 prodrug to its active moiety, levcromakalim, was evaluated in vitro using human ocular tissues and plasma samples and after incubation with human phosphatase enzymes (2.0 nM-1.0 µM). Results: C57BL/6J mice treated once daily with 0.2% QLS-101 exhibited significant (P < 0.01) IOP reductions of 2.1 ± 0.4 mmHg after five days; however, a daily attenuation of the effect was noted by 23h post-dose. By comparison, treatment with 0.4% QLS-101 lowered IOP by 4.8 ± 0.7 mm Hg (P < 0.0001) which was sustained for 24 hours. Unlike levcromakalim, QLS-101 failed to induce KATP channel activity in HEK-Kir6.2/SUR2B cells consistent with its development as a prodrug. No off-target receptor effects were detected with either compound. In vitro ocular tissue conversion of QLS-101 prodrug was identified in human iris, ciliary body, trabecular meshwork, and sclera. Alkaline phosphatase was found to convert QLS-101 (mean Km = 630 µM, kcat = 15 min-1) to levcromakalim. Conclusions: QLS-101 is a novel KATP channel opening prodrug that when converted to levcromakalim shows 24-hour IOP lowering after once-daily topical ocular administration.


Subject(s)
KATP Channels , Prodrugs , Adenosine Triphosphate/metabolism , Animals , Cromakalim , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , Potassium , Prodrugs/pharmacology , Trabecular Meshwork/metabolism
5.
Invest Ophthalmol Vis Sci ; 63(2): 15, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35129587

ABSTRACT

Purpose: To evaluate the effect of ATP-sensitive potassium channel openers cromakalim prodrug 1 (CKLP1) and diazoxide on IOP in three independent mouse models of ocular hypertension. Methods: Baseline IOP was measured in TGFß2 overexpression, steroid-induced, and iris dispersion (DBA/2J) ocular hypertension mouse models, followed by once daily eyedrop administration with CKLP1 (5 mM) or diazoxide (5 mM). The IOP was measured in conscious animals with a handheld rebound tonometer. Aqueous humor dynamics were assessed by a constant perfusion method. Effect of treatment on ocular tissues was evaluated by transmission electron microscopy. Results: CKLP1 decreased the IOP by 20% in TGFß2 overexpressing mice (n = 6; P < 0.0001), 24% in steroid-induced ocular hypertensive mice (n = 8; P < 0.0001), and 43% in DBA/2J mice (n = 15; P < 0.0001). Diazoxide decreased the IOP by 32% in mice with steroid-induced ocular hypertension (n = 13; P < 0.0001) and by 41% in DBA/2J mice (n = 4; P = 0.005). An analysis of the aqueous humor dynamics revealed that CKLP1 decreased the episcleral venous pressure by 29% in TGFß2 overexpressing mice (n = 13; P < 0.0001) and by 72% in DBA/2J mice (n = 4 control, 3 treated; P = 0.0002). Diazoxide lowered episcleral venous pressure by 35% in steroid-induced ocular hypertensive mice (n = 3; P = 0.03). Tissue histology and cell morphology appeared normal when compared with controls. Accumulation of extracellular matrix was reduced in CKLP1- and diazoxide-treated eyes in the steroid-induced ocular hypertension model. Conclusions: ATP-sensitive potassium channel openers CKLP1 and diazoxide effectively decreased the IOP in ocular hypertensive animal models by decreasing the episcleral venous pressure, supporting a potential therapeutic application of these agents in ocular hypertension and glaucoma.


Subject(s)
Cromakalim/administration & dosage , Diazoxide/administration & dosage , Intraocular Pressure/drug effects , KATP Channels/drug effects , Ocular Hypertension/drug therapy , Animals , Antihypertensive Agents/administration & dosage , Disease Models, Animal , Eye/ultrastructure , KATP Channels/metabolism , Mice , Mice, Inbred DBA , Microscopy, Electron, Transmission , Ocular Hypertension/metabolism , Ocular Hypertension/physiopathology , Ophthalmic Solutions
6.
RSC Med Chem ; 12(3): 394-405, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-34046622

ABSTRACT

Bile acid derivatives have been investigated as possible therapeutics for a wide array of conditions, including several for which gut-restricted analogs would likely be preferred. These include the prevention of Clostridioides difficile infection (CDI) and the treatment of inflammatory bowel disease (IBD). The design of gut-restricted bile acid analogs, however, is complicated by the highly efficient enterohepatic circulation system that typically reabsorbs these compounds from the digestive tract for subsequent return to the liver. Herein, we report that incorporation of a sulfate group at the 7-position of the bile acid scaffold reduces oral bioavailability and increases fecal recovery in two pairs of compounds designed to inhibit the germination of C. difficile spores. A different approach was necessary for designing gut-restricted bile acid-based TGR5 agonists for the treatment of IBD, as the incorporation of a 7-sulfate group reduces activity at this receptor. Instead, building on our previous discovery that incorporation of a 7-methoxy group into chenodeoxycholic acid derivatives greatly increases their TGR5 receptor potency, we determined that an N-methyl-d-glucamine group could be conjugated to the scaffold to obtain a compound with an excellent mix of potency at the TGR5 receptor, low oral exposure, and good fecal recovery.

7.
J Ocul Pharmacol Ther ; 37(5): 251-260, 2021 06.
Article in English | MEDLINE | ID: mdl-33784195

ABSTRACT

Purpose: To evaluate pharmacokinetic parameters and ocular hypotensive effects of cromakalim prodrug 1 (CKLP1) in normotensive large animal models. Methods: Optimal CKLP1 concentration was determined by dose response and utilized in short- (5-8 days) and long-term (60 days) evaluation in hound dogs (n = 5) and African Green Monkeys (n = 5). Blood pressure was recorded 3-5 times per week with a tail cuff. Concentrations of CKLP1 and the parent compound levcromakalim were assessed in hound dog plasma and select tissues by LC-MS/MS after bilateral ocular treatment with CKLP1 for 8 days. Pharmacokinetic parameters were calculated from days 1, 4, and 8 data. After necropsy, histology was assessed in 43 tissue samples from each animal. Results: In hound dogs and African Green monkeys, 10 mM CKLP1 (optimal concentration) significantly lowered intraocular pressure (IOP) by 18.9% ± 1.1% and 16.7% ± 6.7%, respectively, compared with control eyes (P < 0.05). During treatment, no significant change in systolic or diastolic blood pressure was observed in either species (P > 0.1). Average values for half-life of CKLP1 was 295.3 ± 140.4 min, Cmax, 10.5 ± 1.6 ng/mL, and area under the concentration vs. time curve (AUClast) 5261.4 ± 918.9 ng·min/mL. For levcromakalim, average values of half-life were 96.2 ± 27 min, Cmax 1.2 ± 0.2 ng/mL, and AUClast 281.2 ± 110.8 ng·min/mL. No significant pathology was identified. Conclusions: CKLP1 lowered IOP in hound dogs and African green monkeys with no effect on systemic blood pressure. Ocular topical treatment of CKLP1 showed excellent tolerability even after extended treatment periods.


Subject(s)
Antihypertensive Agents/pharmacokinetics , Cromakalim/pharmacokinetics , Intraocular Pressure/drug effects , KATP Channels/drug effects , Administration, Ophthalmic , Administration, Topical , Animals , Antihypertensive Agents/administration & dosage , Antihypertensive Agents/pharmacology , Area Under Curve , Autopsy/methods , Blood Pressure/drug effects , Chlorocebus aethiops , Cromakalim/administration & dosage , Cromakalim/pharmacology , Dogs , Dose-Response Relationship, Drug , Female , Half-Life , Models, Animal , Primates , Prodrugs
8.
STAR Protoc ; 1(2): 100071, 2020 09 18.
Article in English | MEDLINE | ID: mdl-33111107

ABSTRACT

Clostridioides difficile, an obligate anaerobic bacterium, causes infections leading to prolonged diarrhea. The bacterium produces dormant spores that can withstand an aerobic environment, resulting in easy environmental transfer. Here, we present a convenient sporulation and purification protocol that can be practiced in any lab setting using a portable anaerobic glove bag. This protocol also optimizes existing cell growth methods and presents a detailed trouble shooting guide. This protocol is a modification of those previously reported by Edwards and McBride (2016) and Shen et al. (2016).


Subject(s)
Bacteriological Techniques/methods , Cell Culture Techniques/methods , Clostridioides difficile , Spores, Bacterial , Clostridioides difficile/cytology , Clostridioides difficile/metabolism , Spores, Bacterial/cytology , Spores, Bacterial/isolation & purification , Spores, Bacterial/metabolism
9.
PLoS One ; 15(4): e0231841, 2020.
Article in English | MEDLINE | ID: mdl-32298376

ABSTRACT

Elevated intraocular pressure is the only treatable risk factor for glaucoma, an eye disease that is the leading cause of irreversible blindness worldwide. We have identified cromakalim prodrug 1 (CKLP1), a novel water-soluble ATP-sensitive potassium channel opener, as a new ocular hypotensive agent. To evaluate the pharmacokinetic and safety profile of CKLP1 and its parent compound levcromakalim, Dutch-belted pigmented rabbits were treated intravenously (0.25 mg/kg) or topically (10 mM; 4.1 mg/ml) with CKLP1. Body fluids (blood, aqueous and vitreous humor) were collected at multiple time points and evaluated for the presence of CKLP1 and levcromakalim using a liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) based assay. Histology of tissues isolated from Dutch-belted pigmented rabbits treated once daily for 90 days was evaluated in a masked manner by a certified veterinary pathologist. The estimated plasma parameters following intravenous administration of 0.25 mg/kg of CKLP1 showed CKLP1 had a terminal half-life of 61.8 ± 55.2 min, Tmax of 19.8 ± 23.0 min and Cmax of 1968.5 ± 831.0 ng/ml. Levcromakalim had a plasma terminal half-life of 85.0 ± 37.0 min, Tmax of 61.0 ± 32.0 min and Cmax of 10.6 ± 1.2 ng/ml. Topical CKLP1 treatment in the eye showed low levels (<0.3 ng/mL) of levcromakalim in aqueous and vitreous humor, and trace amounts of CKLP1 and levcromakalim in the plasma. No observable histological changes were noted in selected tissues that were examined following topical application of CKLP1 for 90 consecutive days. These results suggest that CKPL1 is converted to levcromakalim in the eye and likely to some extent in the systemic circulation.


Subject(s)
Cromakalim/pharmacology , Cromakalim/pharmacokinetics , Prodrugs/pharmacology , Prodrugs/pharmacokinetics , Administration, Intravenous , Administration, Topical , Animals , Aqueous Humor/drug effects , Aqueous Humor/metabolism , Chromatography, Liquid , Cornea/cytology , Cornea/drug effects , Cromakalim/administration & dosage , Cromakalim/blood , Eye/cytology , Eye/drug effects , Eye/metabolism , Female , Mass Spectrometry , Prodrugs/therapeutic use , Rabbits , Vitreous Body/drug effects , Vitreous Body/metabolism
10.
J Biomech Eng ; 142(7)2020 07 01.
Article in English | MEDLINE | ID: mdl-31891381

ABSTRACT

This study presents the influence of control parameters including population (NP) size, mutation factor (F), crossover (Cr), and four types of differential evolution (DE) algorithms including random, best, local-to-best, and local-to-best with self-adaptive (SA) modification for the purpose of optimizing the compositions of dimethylsufloxide (DMSO)-free cryoprotectants. Post-thaw recovery of Jurkat cells cryopreserved with two DMSO-free cryoprotectants at a cooling rate of 1 °C/min displayed a nonlinear, four-dimensional structure with multiple saddle nodes, which was a suitable training model to tune the control parameters and select the most appropriate type of differential evolution algorithm. Self-adaptive modification presented better performance in terms of optimization accuracy and sensitivity of mutation factor and crossover among the four different types of algorithms tested. Specifically, the classical type of differential evolution algorithm exhibited a wide acceptance to mutation factor and crossover. The optimization performance is more sensitive to mutation than crossover and the optimization accuracy is proportional to the population size. Increasing population size also reduces the sensitivity of the algorithm to the value of the mutation factor and crossover. The analysis of optimization accuracy and convergence speed suggests larger population size with F > 0.7 and Cr > 0.3 are well suited for use with cryopreservation optimization purposes. The tuned differential evolution algorithm is validated through finding global maximums of other two DMSO-free cryoprotectant formulation datasets. The results of these studies can be used to help more efficiently determine the optimal composition of multicomponent DMSO-free cryoprotectants in the future.


Subject(s)
Cryoprotective Agents , Algorithms
11.
J Biol Chem ; 294(49): 18873-18880, 2019 12 06.
Article in English | MEDLINE | ID: mdl-31653697

ABSTRACT

The anthelmintic drug praziquantel (PZQ) is used to treat schistosomiasis, a neglected tropical disease that affects over 200 million people worldwide. PZQ causes Ca2+ influx and spastic paralysis of adult worms and rapid vacuolization of the worm surface. However, the mechanism of action of PZQ remains unknown even after 40 years of clinical use. Here, we demonstrate that PZQ activates a schistosome transient receptor potential (TRP) channel, christened SmTRPMPZQ, present in parasitic schistosomes and other PZQ-sensitive parasites. Several properties of SmTRPMPZQ were consistent with known effects of PZQ on schistosomes, including (i) nanomolar sensitivity to PZQ; (ii) stereoselectivity toward (R)-PZQ; (iii) mediation of sustained Ca2+ signals in response to PZQ; and (iv) a pharmacological profile that mirrors the well-known effects of PZQ on muscle contraction and tegumental disruption. We anticipate that these findings will spur development of novel therapeutic interventions to manage schistosome infections and broader interest in PZQ, which is finally unmasked as a potent flatworm TRP channel activator.


Subject(s)
Anthelmintics/pharmacology , Praziquantel/pharmacology , Schistosoma/metabolism , Transient Receptor Potential Channels/metabolism , Animals , Electrophysiology , Female , HEK293 Cells , Humans , Mice , Schistosoma/drug effects
12.
J Med Chem ; 62(14): 6824-6830, 2019 07 25.
Article in English | MEDLINE | ID: mdl-31268316

ABSTRACT

TGR5 agonists are potential therapeutics for a variety of conditions including type 2 diabetes, obesity, and inflammatory bowel disease. After screening a library of chenodeoxycholic acid (CDCA) derivatives, it was determined that a range of modifications could be made to the acid moiety of CDCA which significantly increased TGR5 agonist potency. Surprisingly, methylation of the 7-hydroxyl of CDCA led to a further dramatic increase in potency, allowing the identification of 5.6 nM TGR5 agonist 17.


Subject(s)
Chenodeoxycholic Acid/analogs & derivatives , Chenodeoxycholic Acid/pharmacology , Receptors, G-Protein-Coupled/agonists , Cell Line , Cyclic AMP/metabolism , Drug Discovery , Humans , Methylation , Molecular Docking Simulation , Receptors, G-Protein-Coupled/metabolism
13.
Biotechnol Bioeng ; 116(3): 631-643, 2019 03.
Article in English | MEDLINE | ID: mdl-30475391

ABSTRACT

This study examined the post-thaw recovery of Jurkat cells cryopreserved in three combinations of five osmolytes including trehalose, sucrose, glycerol, mannitol, and creatine. Cellular response was characterized using low-temperature Raman spectroscopy, and variation of post-thaw recovery was analyzed using statistical modeling. Combinations of osmolytes displayed distinct trends of post-thaw recovery, and a nonlinear relationship between compositions and post-thaw recovery was observed, suggesting interactions not only between different solutes but also between solutes and cells. The post-thaw recovery for optimized cryoprotectants in different combinations of osmolytes at a cooling rate of 1°C/min was comparable to that measured with 10% dimethyl sulfoxide. Statistical modeling was used to understand the importance of individual osmolytes as well as interactions between osmolytes on post-thaw recovery. Both higher concentrations of glycerol and certain interactions between sugars and glycerol were found to typically increase the post-thaw recovery. Raman images showed the influence of osmolytes and combinations of osmolytes on ice crystal shape, which reflected the interactions between osmolytes and water. Differences in the composition also influenced the presence or absence of intracellular ice formation, which could also be detected by Raman. These studies help us understand the modes of action for cryoprotective agents in these osmolyte solutions.


Subject(s)
Cell Survival/drug effects , Cryopreservation/methods , Cryoprotective Agents/pharmacology , Cold Temperature , Cryoprotective Agents/chemistry , Glycerol/pharmacology , Humans , Jurkat Cells , Spectrum Analysis, Raman , Sucrose/pharmacology
15.
PLoS Negl Trop Dis ; 12(4): e0006420, 2018 04.
Article in English | MEDLINE | ID: mdl-29668703

ABSTRACT

The anthelmintic praziquantel (±PZQ) serves as a highly effective antischistosomal therapy. ±PZQ causes a rapid paralysis of adult schistosome worms and deleterious effects on the worm tegument. In addition to these activities against the parasite, ±PZQ also modulates host vascular tone in blood vessels where the adult worms reside. In resting mesenteric arteries ±PZQ causes a constriction of basal tone, an effect mediated by (R)-PZQ activation of endogenous serotoninergic G protein coupled receptors (GPCRs). Here, we demonstrate a novel vasodilatory action of ±PZQ in mesenteric vessels that are precontracted by high potassium-evoked depolarization, an effect previously reported to be associated with agonists of the transient receptor potential melastatin 8 channel (TRPM8). Pharmacological profiling a panel of 17 human TRPs demonstrated ±PZQ activity against a subset of human TRP channels. Several host TRP channels (hTRPA1, hTRPC3, hTRPC7) were activated by both (R)-PZQ and (S)-PZQ over a micromolar range whereas hTRPM8 showed stereoselective activation by (S)-PZQ. The relaxant effect of ±PZQ in mesenteric arteries was caused by (S)-PZQ, and mimicked by TRPM8 agonists. However, persistence of both (S)-PZQ and TRPM8 agonist evoked vessel relaxation in TRPM8 knockout tissue suggested that canonical TRPM8 does not mediate this (S)-PZQ effect. We conclude that (S)-PZQ is vasoactive over the micromolar range in mesenteric arteries although the molecular mediators of this effect remain to be identified. These data expand our knowledge of the polypharmacology and host vascular efficacy of this clinically important anthelmintic.


Subject(s)
Anthelmintics/pharmacology , Praziquantel/pharmacology , TRPM Cation Channels/drug effects , Vasodilator Agents/pharmacology , Animals , Female , HEK293 Cells , Humans , Mesenteric Arteries/drug effects , Mice , Stereoisomerism , TRPM Cation Channels/metabolism
16.
Nat Commun ; 8(1): 1910, 2017 12 05.
Article in English | MEDLINE | ID: mdl-29208933

ABSTRACT

Schistosomiasis is a debilitating tropical disease caused by infection with parasitic blood flukes. Approximately 260 million people are infected worldwide, underscoring the clinical and socioeconomic impact of this chronic infection. Schistosomiasis is treated with the drug praziquantel (PZQ), which has proved the therapeutic mainstay for over three decades of clinical use. However, the molecular target(s) of PZQ remain undefined. Here we identify a molecular target for the antischistosomal eutomer - (R)-PZQ - which functions as a partial agonist of the human serotoninergic 5HT2B receptor. (R)-PZQ modulation of serotoninergic signaling occurs over a concentration range sufficient to regulate vascular tone of the mesenteric blood vessels where the adult parasites reside within their host. These data establish (R)-PZQ as a G-protein-coupled receptor ligand and suggest that the efficacy of this clinically important anthelmintic is supported by a broad, cross species polypharmacology with PZQ modulating signaling events in both host and parasite.


Subject(s)
Anthelmintics/metabolism , Mesenteric Arteries/drug effects , Mesenteric Veins/drug effects , Praziquantel/metabolism , Schistosoma mansoni/drug effects , Serotonin 5-HT2 Receptor Agonists/pharmacokinetics , Vasoconstriction/drug effects , Animals , Anthelmintics/pharmacology , Cell Line , Computer Simulation , Drug Partial Agonism , Female , Humans , Mice , Myography , Praziquantel/pharmacology , Receptor, Serotonin, 5-HT2B/drug effects , Receptor, Serotonin, 5-HT2B/metabolism , Schistosomiasis mansoni/drug therapy , Serotonin 5-HT2 Receptor Agonists/pharmacology
17.
Invest Ophthalmol Vis Sci ; 58(13): 5731-5742, 2017 11 01.
Article in English | MEDLINE | ID: mdl-29114841

ABSTRACT

Purpose: Cromakalim prodrug 1 (CKLP1) is a water-soluble ATP-sensitive potassium channel opener that has shown ocular hypotensive properties in ex vivo and in vivo experimental models. To determine its mechanism of action, we assessed the effect of CKLP1 on aqueous humor dynamics and in combination therapy with existing ocular hypotensive agents. Methods: Outflow facility was assessed in C57BL/6 mice by ex vivo eye perfusions and by in vivo constant flow infusion following CKLP1 treatment. Human anterior segments with no trabecular meshwork were evaluated for effect on pressure following CKLP1 treatment. CKLP1 alone and in combination with latanoprost, timolol, and Rho kinase inhibitor Y27632 were evaluated for effect on intraocular pressure in C57BL/6 mice and Dutch-belted pigmented rabbits. Results: CKLP1 lowered episcleral venous pressure (control: 8.9 ± 0.1 mm Hg versus treated: 6.2 ± 0.1 mm Hg, P < 0.0001) but had no detectable effect on outflow facility, aqueous humor flow rate, or uveoscleral outflow. Treatment with CKLP1 in human anterior segments without the trabecular meshwork resulted in a 50% ± 9% decrease in pressure, suggesting an effect on the distal portion of the conventional outflow pathway. CKLP1 worked additively with latanoprost, timolol, and Y27632 to lower IOP, presumably owing to combined effects on different aspects of aqueous humor dynamics. Conclusions: CKLP1 lowered intraocular pressure by reducing episcleral venous pressure and lowering distal outflow resistance in the conventional outflow pathway. Owing to this unique mechanism of action, CKLP1 works in an additive manner to lower intraocular pressure with latanoprost, timolol, and Rho kinase inhibitor Y27632.


Subject(s)
Antihypertensive Agents/therapeutic use , Aqueous Humor/physiology , Cromakalim/therapeutic use , Intraocular Pressure/drug effects , Prodrugs/therapeutic use , Amides/therapeutic use , Animals , Anterior Eye Segment/drug effects , Drug Synergism , Drug Therapy, Combination , Female , Humans , Latanoprost , Male , Mice , Mice, Inbred C57BL , Middle Aged , Ophthalmic Solutions , Prostaglandins F, Synthetic/therapeutic use , Pyridines/therapeutic use , Rabbits , Sclera/blood supply , Timolol/therapeutic use , Tonometry, Ocular , Venous Pressure/drug effects
18.
J Med Chem ; 60(8): 3451-3471, 2017 04 27.
Article in English | MEDLINE | ID: mdl-28402634

ABSTRACT

Standard antibiotic-based strategies for the treatment of Clostridium difficile infections disrupt indigenous microbiota and commonly fail to eradicate bacterial spores, two key factors that allow recurrence of infection. As an alternative approach to controlling C. difficile infection, a series of bile acid derivatives have been prepared that inhibit taurocholate-induced spore germination. These analogues have been evaluated in a highly virulent NAP1 strain using optical density and phase-contrast microscopy assays. Heterocycle substitutions at C24 were well-tolerated and several tetrazole-containing derivatives were highly potent inhibitors in both assays, with complete inhibition of spore germination observed at 10-25 µM. To limit intestinal absorption, C7-sulfated analogues designed to avoid active and passive transport pathways were prepared. One of these derivatives, compound 21b, was found to be a potent inhibitor of C. difficile spore germination and poorly permeable in a Caco-2 model of intestinal epithelial absorption, suggesting that it is likely to be gut-restricted.


Subject(s)
Bile Acids and Salts/chemical synthesis , Bile Acids and Salts/pharmacology , Clostridioides difficile/physiology , Spores, Bacterial/physiology , Bile Acids and Salts/chemistry , Cell Line, Tumor , Humans
19.
Stem Cells Dev ; 26(11): 828-842, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28178884

ABSTRACT

Current methods for freezing mesenchymal stromal cells (MSCs) result in poor post-thaw function, which limits the clinical utility of these cells. This investigation develops a novel approach to preserve MSCs using combinations of sugars, sugar alcohols, and small-molecule additives. MSCs frozen using these solutions exhibit improved post-thaw attachment and a more normal alignment of the actin cytoskeleton compared to cells exposed to dimethylsulfoxide (DMSO). Osteogenic and chondrogenic differentiation assays show that cells retain their mesenchymal lineage properties. Genomic analysis indicates that the different freezing media evaluated have different effects on the levels of DNA hydroxymethylation, which are a principal epigenetic mark and a key step in the demethylation of CpG doublets. RNA sequencing and quantitative real time-polymerase chain reaction validation demonstrate that transcripts for distinct classes of cytoprotective genes, as well as genes related to extracellular matrix structure and growth factor/receptor signaling are upregulated in experimental freezing solutions compared to DMSO. For example, the osmotic regulator galanin, the antiapoptotic marker B cell lymphoma 2, as well as the cell surface adhesion molecules CD106 (vascular cell adhesion molecule 1) and CD54 (intracellular adhesion molecule 1) are all elevated in DMSO-free solutions. These studies validate the concept that DMSO-free solutions improve post-thaw biological functions and are viable alternatives for freezing MSCs. These novel solutions promote expression of cytoprotective genes, modulate the CpG epigenome, and retain the differentiation ability of MSCs, suggesting that osmolyte-based freezing solutions may provide a new paradigm for therapeutic cell preservation.


Subject(s)
Cryopreservation , Cryoprotective Agents/pharmacology , Epigenesis, Genetic/drug effects , Mesenchymal Stem Cells/metabolism , Osmosis/drug effects , Actin Cytoskeleton/drug effects , Actin Cytoskeleton/metabolism , Biomarkers/metabolism , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Cellular Senescence/drug effects , DNA Methylation/drug effects , Dimethyl Sulfoxide/pharmacology , Freezing , Gene Expression Regulation/drug effects , Humans , Mesenchymal Stem Cells/drug effects , Osteogenesis/drug effects , Solutions
20.
J Tissue Eng Regen Med ; 11(10): 2806-2815, 2017 10.
Article in English | MEDLINE | ID: mdl-27229375

ABSTRACT

This investigation describes the use of a differential evolution (DE) algorithm to optimize cryopreservation solution compositions and cooling rates for specific cell types. Jurkat cells (a lymphocyte model cell type) and mesenchymal stem cells (MSCs) were combined with non-DMSO solutions at concentrations dictated by a DE algorithm. The cells were then frozen in 96-well plates at DE algorithm-dictated cooling rates in the range 0.5-10°C/min. The DE algorithm was iterated until convergence resulted in identification of an optimum solution composition and cooling rate, which occurred within six to nine generations (seven to 10 experiments) for both cell types. The optimal composition for cryopreserving Jurkat cells included 300 mm trehalose, 10% glycerol and 0.01% ectoine (TGE) at 10°C/min. The optimal composition for cryopreserving MSCs included 300 mm ethylene glycol, 1 mm taurine and 1% ectoine (SEGA) at 1°C/min. High-throughput concentration studies verified the optimum identified by the DE algorithm. Vial freezing experiments showed that experimental solutions of TGE at 10°C/min resulted in significantly higher viability for Jurkat cells than DMSO at 1°C/min, while experimental solutions of SEGA at 10°C/min resulted in significantly higher recovery for MSCs than DMSO at 1°C/min; these results were solution- and cell type-specific. Implementation of the DE algorithm permits optimization of multicomponent freezing solutions in a rational, accelerated fashion. This technique can be applied to optimize freezing conditions, which vary by cell type, with significantly fewer experiments than traditional methods. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Algorithms , Cryopreservation/methods , Mesenchymal Stem Cells/cytology , Cell Survival/drug effects , Cryoprotective Agents/pharmacology , Freezing , High-Throughput Screening Assays , Humans , Jurkat Cells , Mesenchymal Stem Cells/drug effects , Models, Biological , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...