Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Pharmacol Sin ; 45(6): 1264-1275, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38438582

ABSTRACT

In addition to the classical resistance mechanisms, receptor tyrosine-protein kinase AXL is a main mechanism of resistance to third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) osimertinib in EGFR-mutated non-small cell lung cancer (NSCLC). Developing an effective AXL inhibitor is important to sensitize osimertinib in clinical application. In this study we assessed the efficacy of brigatinib, a second-generation of anaplastic lymphoma kinase (ALK)-TKI, as a novel AXL inhibitor, in overcoming acquired resistance to osimertinib induced by AXL activation. We established an AXL-overexpression NSCLC cell line and conducted high-throughput screening of a small molecule chemical library containing 510 anti-tumor drugs. We found that brigatinib potently inhibited AXL expression, and that brigatinib (0.5 µM) significantly enhanced the anti-tumor efficacy of osimertinib (1 µM) in AXL-mediated osimertinib-resistant NSCLC cell lines in vitro. We demonstrated that brigatinib had a potential ability to bind AXL kinase protein and further inhibit its downstream pathways in NSCLC cell lines. Furthermore, we revealed that brigatinib might decrease AXL expression through increasing K48-linked ubiquitination of AXL and promoting AXL degradation in HCC827OR cells and PC-9OR cells. In AXL-high expression osimertinib-resistant PC-9OR and HCC827OR cells derived xenograft mouse models, administration of osimertinib (10 mg·kg-1·d-1) alone for 3 weeks had no effect, and administration of brigatinib (25 mg·kg-1·d-1) alone caused a minor inhibition on the tumor growth; whereas combination of osimertinib and brigatinib caused marked tumor shrinkages. We concluded that brigatinib may be a promising clinical strategy for enhancing osimertinib efficacy in AXL-mediated osimertinib-resistant NSCLC patients.


Subject(s)
Acrylamides , Aniline Compounds , Antineoplastic Agents , Axl Receptor Tyrosine Kinase , Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , ErbB Receptors , Lung Neoplasms , Mice, Nude , Organophosphorus Compounds , Protein Kinase Inhibitors , Proto-Oncogene Proteins , Pyrimidines , Receptor Protein-Tyrosine Kinases , Animals , Female , Mice , Acrylamides/pharmacology , Acrylamides/therapeutic use , Aniline Compounds/pharmacology , Aniline Compounds/therapeutic use , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm/drug effects , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Indoles , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Mice, Inbred BALB C , Mutation , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins/antagonists & inhibitors , Pyrimidines/pharmacology , Pyrimidines/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor Protein-Tyrosine Kinases/metabolism , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...