Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(12): 5756-5770, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36786384

ABSTRACT

Nuclear pore complexes (NPCs) are the only gateways between the nucleus and cytoplasm in eukaryotic cells. They restrict free diffusion to molecules below 5 nm while facilitating the active transport of selected cargoes, sometimes as large as the pore itself. This versatility implies an important pore plasticity. Recently, cryo-EM and AI-based protein modeling of human NPC revealed with acute precision how most constituents are arranged. But the basket, a fish trap-like structure capping the nucleoplasmic side of the pore, remains poorly resolved. Here by atomic force microscopy (AFM) coupled to single molecule localization microscopy (SMLM) we revealed that the basket is very soft and explores a large conformational landscape: apart from its canonical basket shape, it dives into the central pore channel or opens, with filaments reaching to the pore sides. Our observations highlight how this structure can adapt and let morphologically diverse cargoes shuttle through NPCs.


Subject(s)
Cell Nucleus , Nuclear Pore , Animals , Humans , Nuclear Pore/chemistry , Nuclear Pore/metabolism , Microscopy, Atomic Force , Cell Nucleus/metabolism , Cytoplasm/metabolism , Eukaryotic Cells/metabolism
3.
Nat Immunol ; 21(8): 868-879, 2020 08.
Article in English | MEDLINE | ID: mdl-32690950

ABSTRACT

STING is essential for control of infections and for tumor immunosurveillance, but it can also drive pathological inflammation. STING resides on the endoplasmic reticulum (ER) and traffics following stimulation to the ERGIC/Golgi, where signaling occurs. Although STING ER exit is the rate-limiting step in STING signaling, the mechanism that drives this process is not understood. Here we identify STEEP as a positive regulator of STING signaling. STEEP was associated with STING and promoted trafficking from the ER. This was mediated through stimulation of phosphatidylinositol-3-phosphate (PtdIns(3)P) production and ER membrane curvature formation, thus inducing COPII-mediated ER-to-Golgi trafficking of STING. Depletion of STEEP impaired STING-driven gene expression in response to virus infection in brain tissue and in cells from patients with STING-associated diseases. Interestingly, STING gain-of-function mutants from patients interacted strongly with STEEP, leading to increased ER PtdIns(3)P levels and membrane curvature. Thus, STEEP enables STING signaling by promoting ER exit.


Subject(s)
Endoplasmic Reticulum/metabolism , Gene Expression Regulation/physiology , Membrane Proteins/metabolism , Nerve Tissue Proteins/metabolism , Signal Transduction/physiology , Animals , Endoplasmic Reticulum/immunology , Humans , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/metabolism , Membrane Proteins/immunology , Mice , Nerve Tissue Proteins/immunology , Nuclear Proteins , Protein Transport/physiology
4.
PLoS One ; 10(9): e0137965, 2015.
Article in English | MEDLINE | ID: mdl-26366573

ABSTRACT

Membrane curvature is involved in numerous biological pathways like vesicle trafficking, endocytosis or nuclear pore complex assembly. In addition to its topological role, membrane curvature is sensed by specific proteins, enabling the coordination of biological processes in space and time. Amongst membrane curvature sensors are the ALPS (Amphipathic Lipid Packing Sensors). ALPS motifs are short peptides with peculiar amphipathic properties. They are found in proteins targeted to distinct curved membranes, mostly in the early secretory pathway. For instance, the ALPS motif of the golgin GMAP210 binds trafficking vesicles, while the ALPS motif of Nup133 targets nuclear pores. It is not clear if, besides curvature sensitivity, ALPS motifs also provide target specificity, or if other domains in the surrounding protein backbone are involved. To elucidate this aspect, we studied the subcellular localization of ALPS motifs outside their natural protein context. The ALPS motifs of GMAP210 or Nup133 were grafted on artificial fluorescent probes. Importantly, ALPS motifs are held in different positions and these contrasting architectures were mimicked by the fluorescent probes. The resulting chimeras recapitulated the original proteins localization, indicating that ALPS motifs are sufficient to specifically localize proteins. Modulating the electrostatic or hydrophobic content of Nup133 ALPS motif modified its avidity for cellular membranes but did not change its organelle targeting properties. In contrast, the structure of the backbone surrounding the helix strongly influenced targeting. In particular, introducing an artificial coiled-coil between ALPS and the fluorescent protein increased membrane curvature sensitivity. This coiled-coil domain also provided membrane curvature sensitivity to the amphipathic helix of Sar1. The degree of curvature sensitivity within the coiled-coil context remains correlated to the natural curvature sensitivity of the helices. This suggests that the chemistry of ALPS motifs is a key parameter for membrane curvature sensitivity, which can be further modulated by the surrounding protein backbone.


Subject(s)
Cell Membrane/metabolism , Monomeric GTP-Binding Proteins/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Proteins/metabolism , Amino Acid Motifs , Cell Line , Cell Membrane/genetics , Cytoskeletal Proteins , Humans , Minor Histocompatibility Antigens , Monomeric GTP-Binding Proteins/genetics , Nuclear Pore Complex Proteins/genetics , Nuclear Proteins/genetics
5.
Chromosoma ; 119(5): 469-77, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20721671

ABSTRACT

Nuclear pore complexes (NPCs) serve as transport channels across the nuclear membrane, a double lipid bilayer that physically separates the nucleoplasm and cytoplasm of eukaryotic cells. New evidence suggests that the multiprotein nuclear pores also play a role in chromatin organization and gene expression. Given the importance of NPC function, it is not surprising that a growing list of human diseases and developmental defects have been linked to its malfunction. In order to fully understand the functional repertoire of NPCs and their essential role for nuclear organization, it is critical to determine the sequence of events that lead to the formation of nuclear pores. This is particularly relevant since NPC number, and possibly composition, are tightly linked to metabolic activity. Most of our knowledge is derived from NPC formation that occurs in dividing cells at the end of mitosis when the nuclear envelope (NE) and NPCs reform from disassembled precursors. However, NPC assembly also takes place during interphase into an intact NE. Importantly, this process is not restricted to dividing cells but also occurs during cell differentiation. Here, we will review aspects unique to this process, namely the regulation of nuclear expansion and the mechanisms of fusion between the outer and inner nuclear membranes. We will then discuss conserved and diverging mechanisms between post-mitotic and interphase assembly of the proteinaceous structure in light of recently published data.


Subject(s)
Eukaryotic Cells/metabolism , Nuclear Envelope/metabolism , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Active Transport, Cell Nucleus , Animals , Cell Nucleus/metabolism , Chromatin/genetics , Chromatin/metabolism , Gene Expression , Humans , Interphase , Membrane Fusion , Mitosis , Nuclear Envelope/ultrastructure , Nuclear Pore/genetics , Nuclear Pore/ultrastructure , Nuclear Pore Complex Proteins/genetics
6.
Cell ; 141(6): 1030-41, 2010 Jun 11.
Article in English | MEDLINE | ID: mdl-20550937

ABSTRACT

In metazoa, nuclear pore complexes (NPCs) assemble from disassembled precursors into a reforming nuclear envelope (NE) at the end of mitosis and into growing intact NEs during interphase. Here, we show via RNAi-mediated knockdown that ELYS, a nucleoporin critical for the recruitment of the essential Nup107/160 complex to chromatin, is required for NPC assembly at the end of mitosis but not during interphase. Conversely, the transmembrane nucleoporin POM121 is critical for the incorporation of the Nup107/160 complex into new assembly sites specifically during interphase. Strikingly, recruitment of the Nup107/160 complex to an intact NE involves a membrane curvature-sensing domain of its constituent Nup133, which is not required for postmitotic NPC formation. Our results suggest that in organisms with open mitosis, NPCs assemble via two distinct mechanisms to accommodate cell cycle-dependent differences in NE topology.


Subject(s)
Cell Cycle , Eukaryotic Cells/metabolism , Nuclear Pore/metabolism , Animals , Cell Line, Tumor , DNA-Binding Proteins/metabolism , Humans , Membrane Glycoproteins/metabolism , Mice , Minor Histocompatibility Antigens , Nuclear Pore Complex Proteins/metabolism , Protein Multimerization , Transcription Factors/metabolism , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...