Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
ACS Nano ; 18(6): 4726-4732, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38284570

ABSTRACT

Ultralow dimensionality of 2D layers magnifies their sensitivity to adjacent charges enabling even postprocessing electric control of multifunctional structures. However, functionalizing 2D layers remains an important challenge for on-demand device-property exploitation. Here we report that an electrical and even fully optical way to control and write modifications to the magnetoresistive response of CVD-deposited graphene is achievable through the electrostatics of the photoferroelectric substrate. For electrical control, the ferroelectric polarization switch modifies graphene magnetoresistance by 67% due to a Fermi level shift with related modification in charge mobility. A similar function is also attained entirely by bandgap light due to the substrate photovoltaic effect. Moreover, an all-optical way to imprint and recover graphene magnetoresistance by light is reported as well as magnetic control of graphene transconductance. These findings extend photoferroelectric control in 2D structures to magnetic dimensions and advance wireless operation for sensors and field-effect transistors.

2.
ACS Appl Mater Interfaces ; 15(48): 55948-55956, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-37983566

ABSTRACT

As global data generation continues to rise, there is an increasing demand for revolutionary in-memory computing methodologies and efficient machine learning solutions. Despite recent progress in electrical and electro-optical simulations of machine learning devices, the all-optical nonthermal function remains challenging, with single wavelength operation still elusive. Here we report on an optical and monochromatic way of neuromorphic signal processing for brain-inspired functions, eliminating the need for electrical pulses. Multilevel synaptic potentiation-depression cycles are successfully achieved optically by leveraging photovoltaic charge generation and polarization within the photoferroelectric substrate interfaced with the graphene sensor. Furthermore, the demonstrated low-power prototype device is able to reproduce exact signal profile of brain tissues yet with more than 2 orders of magnitude faster response. The reported properties should trigger all-optical and low power artificial neuromorphic development based on photoferroelectric structures.

3.
ACS Nano ; 17(21): 21865-21877, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37864568

ABSTRACT

Emerging reconfigurable devices are fast gaining popularity in the search for next-generation computing hardware, while ferroelectric engineering of the doping state in semiconductor materials has the potential to offer alternatives to traditional von-Neumann architecture. In this work, we combine these concepts and demonstrate the suitability of reconfigurable ferroelectric field-effect transistors (Re-FeFETs) for designing nonvolatile reconfigurable logic-in-memory circuits with multifunctional capabilities. Modulation of the energy landscape within a homojunction of a 2D tungsten diselenide (WSe2) layer is achieved by independently controlling two split-gate electrodes made of a ferroelectric 2D copper indium thiophosphate (CuInP2S6) layer. Controlling the state encoded in the program gate enables switching between p, n, and ambipolar FeFET operating modes. The transistors exhibit on-off ratios exceeding 106 and hysteresis windows of up to 10 V width. The homojunction can change from Ohmic-like to diode behavior with a large rectification ratio of 104. When programmed in the diode mode, the large built-in p-n junction electric field enables efficient separation of photogenerated carriers, making the device attractive for energy-harvesting applications. The implementation of the Re-FeFET for reconfigurable logic functions shows how a circuit can be reconfigured to emulate either polymorphic ferroelectric NAND/AND logic-in-memory or electronic XNOR logic with a long retention time exceeding 104 s. We also illustrate how a circuit design made of just two Re-FeFETs exhibits high logic expressivity with reconfigurability at runtime to implement several key nonvolatile 2-input logic functions. Moreover, the Re-FeFET circuit demonstrates high compactness, with an up to 80% reduction in transistor count compared to standard CMOS design. The 2D van de Waals Re-FeFET devices therefore exhibit promising potential for both More-than-Moore and beyond-Moore future of electronics, in particular for an energy-efficient implementation of in-memory computing and machine learning hardware, due to their multifunctionality and design compactness.

4.
ACS Appl Mater Interfaces ; 15(12): 15732-15744, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36919904

ABSTRACT

Interface-driven effects in ferroelectric van der Waals (vdW) heterostructures provide fresh opportunities in the search for alternative device architectures toward overcoming the von Neumann bottleneck. However, their implementation is still in its infancy, mostly by electrical control. It is of utmost interest to develop strategies for additional optical and multistate control in the quest for novel neuromorphic architectures. Here, we demonstrate the electrical and optical control of the ferroelectric polarization states of ferroelectric field effect transistors (FeFET). The FeFETs, fully made of ReS2/hBN/CuInP2S6 vdW materials, achieve an on/off ratio exceeding 107, a hysteresis memory window up to 7 V wide, and multiple remanent states with a lifetime exceeding 103 s. Moreover, the ferroelectric polarization of the CuInP2S6 (CIPS) layer can be controlled by photoexciting the vdW heterostructure. We perform wavelength-dependent studies, which allow for identifying two mechanisms at play in the optical control of the polarization: band-to-band photocarrier generation into the 2D semiconductor ReS2 and photovoltaic voltage into the 2D ferroelectric CIPS. Finally, heterosynaptic plasticity is demonstrated by operating our FeFET in three different synaptic modes: electrically stimulated, optically stimulated, and optically assisted synapse. Key synaptic functionalities are emulated including electrical long-term plasticity, optoelectrical plasticity, optical potentiation, and spike rate-dependent plasticity. The simulated artificial neural networks demonstrate an excellent accuracy level of 91% close to ideal-model synapses. These results provide a fresh background for future research on photoferroelectric vdW systems and put ferroelectric vdW heterostructures on the roadmap for the next neuromorphic computing architectures.

5.
Nanomaterials (Basel) ; 12(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35630963

ABSTRACT

We review the current understanding of the time scale and mechanisms associated with the change in spin state in transition metal-based spin crossover (SCO) molecular complexes. Most time resolved experiments, performed by optical techniques, rely on the intrinsic light-induced switching properties of this class of materials. The optically driven spin state transition can be mediated by a rich interplay of complexities including intermediate states in the spin state transition process, as well as intermolecular interactions, temperature, and strain. We emphasize here that the size reduction down to the nanoscale is essential for designing SCO systems that switch quickly as well as possibly retaining the memory of the light-driven state. We argue that SCO nano-sized systems are the key to device applications where the "write" speed is an important criterion.

6.
Langmuir ; 38(2): 719-726, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34982565

ABSTRACT

The frictional forces of a viscous liquid flow are a major energy loss issue and severely limit microfluidics practical use. Reducing this drag by more than a few tens of percent remain elusive. Here, we show how cylindrical liquid-in-liquid flow leads to drag reduction of 60-99% for sub-mm and mm-sized channels, regardless of whether the viscosity of the transported liquid is larger or smaller than that of the confining one. In contrast to lubrication or sheath flow, we do not require a continuous flow of the confining lubricant, here made of a ferrofluid held in place by magnetic forces. In a laminar flow model with appropriate boundary conditions, we introduce a modified Reynolds number with a scaling that depends on geometrical factors and viscosity ratio of the two liquids. It explains our whole range of data and reveals the key design parameters for optimizing the drag reduction values. Our approach promises a new route for microfluidics designs with pressure gradient reduced by orders of magnitude.


Subject(s)
Magnetic Phenomena , Microfluidics , Friction , Lubrication , Viscosity
7.
Mater Horiz ; 8(8): 2310-2315, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-34846435

ABSTRACT

Molecular systems can exhibit multi-stimuli switching of their properties, with spin crossover materials having unique magnetic transition triggered by temperature and light, among others. Light-induced room temperature operation is however elusive, as optical changes between metastable spin states require cryogenic temperatures. Furthermore, electrical detection is hampered by the intrinsic low conductivity properties of these materials. We show here how a graphene underlayer reveals the light-induced heating that triggers a spin transition, paving the way for using these molecules for room temperature optoelectronic applications.

8.
Nano Lett ; 20(10): 7036-7042, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32931289

ABSTRACT

Spin orbit torque driven switching is a favorable way to manipulate nanoscale magnetic objects for both memory and wireless communication devices. The critical current required to switch from one magnetic state to another depends on the geometry and the intrinsic properties of the materials used, which are difficult to control locally. Here, we demonstrate how focused helium ion beam irradiation can modulate the local magnetic anisotropy of a Co thin film at the microscopic scale. Real-time in situ characterization using the anomalous Hall effect showed up to an order of magnitude reduction of the magnetic anisotropy under irradiation, with multilevel switching demonstrated. The result is that spin-switching current densities, down to 800 kA cm-2, can be achieved on predetermined areas of the film, without the need for lithography. The ability to vary critical currents spatially has implications not only for storage elements but also neuromorphic and probabilistic computing.

9.
Nature ; 581(7806): 58-62, 2020 05.
Article in English | MEDLINE | ID: mdl-32376963

ABSTRACT

When miniaturizing fluidic circuitry, the solid walls of the fluid channels become increasingly important1 because they limit the flow rates achievable for a given pressure drop, and they are prone to fouling2. Approaches for reducing the wall interactions include hydrophobic coatings3, liquid-infused porous surfaces4-6, nanoparticle surfactant jamming7, changes to surface electronic structure8, electrowetting9,10, surface tension pinning11,12 and use of atomically flat channels13. A better solution may be to avoid the solid walls altogether. Droplet microfluidics and sheath flow achieve this but require continuous flow of the central liquid and the surrounding liquid1,14. Here we demonstrate an approach in which aqueous liquid channels are surrounded by an immiscible magnetic liquid, both of which are stabilized by a quadrupolar magnetic field. This creates self-healing, non-clogging, anti-fouling and near-frictionless liquid-in-liquid fluidic channels. Manipulation of the field provides flow control, such as valving, splitting, merging and pumping. The latter is achieved by moving permanent magnets that have no physical contact with the liquid channel. We show that this magnetostaltic pumping method can be used to transport whole human blood with very little damage due to shear forces. Haemolysis (rupture of blood cells) is reduced by an order of magnitude compared with traditional peristaltic pumping, in which blood is mechanically squeezed through a plastic tube. Our liquid-in-liquid approach provides new ways to transport delicate liquids, particularly when scaling channels down to the micrometre scale, with no need for high pressures, and could also be used for microfluidic circuitry.

10.
ACS Nano ; 14(4): 4567-4576, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32223229

ABSTRACT

Nanocrystals are promising building blocks for the development of low-cost infrared optoelectronics. Gating a nanocrystal film in a phototransistor geometry is commonly proposed as a strategy to tune the signal-to-noise ratio by carefully controlling the carrier density within the semiconductor. However, the performance improvement has so far been quite marginal. With metallic electrodes, the gate dependence of the photocurrent follows the gate-induced change of the dark current. Graphene presents key advantages: (i) infrared transparency that allows back-side illumination, (ii) vertical electric field transparency, and (iii) carrier selectivity under gate bias. Here, we investigate a configuration of 2D/0D infrared photodetectors taking advantage of a high capacitance ionic glass gate, large-scale graphene electrodes, and a HgTe nanocrystals layer of high carrier mobility. The introduction of graphene electrodes combined with ionic glass enables one to reconfigure selectively the HgTe nanocrystals and the graphene electrodes between electron-doped (n) and hole-doped (p) states. We unveil that this functionality enables the design a 2D/0D p-n junction that expands throughout the device, with a built-in electric field that assists charge dissociation. We demonstrate that, in this specific configuration, the signal-to-noise ratio for infrared photodetection can be enhanced by 2 orders of magnitude, and that photovoltaic operation can be achieved. The detectivity now reaches 109 Jones, whereas the device only absorbs 8% of the incident light. Additionally, the time response of the device is fast (<10 µs), which strongly contrasts with the slow response commonly observed for 2D/0D mixed-dimensional heterostructures, where larger photoconduction gains come at the cost of slower response.

11.
J Phys Condens Matter ; 32(3): 034001, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31639105

ABSTRACT

The addition of various dipolar molecules is shown to affect the temperature dependence of the spin state occupancy of the much studied spin crossover Fe(II) complex, [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine). Specifically, the addition of benzimidazole results in a re-entrant spin crossover transition, i.e. the spin state starts in the mostly low spin state, then high spin state occupancy increases, and finally the high spin state occupancy decreases with increasing temperature. This behavior contrasts with that observed when the highly polar p -benzoquinonemonoimine zwitterion C6H2(…NH2)2(…O)2 was mixed with [Fe{H2B(pz)2}2(bipy)], which resulted in locking [Fe{H2B(pz)2}2(bipy)] largely into a low spin state while addition of the ethyl derivative C6H2(…NHC2H5)2(…O)2 did not appear to perturb the spin crossover transition of [Fe{H2B(pz)2}2(bipy)].

12.
Nanoscale ; 11(42): 19705-19712, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31620768

ABSTRACT

We report on the modulation of the electrical properties of graphene-based transistors that mirror the properties of a few nanometers thick layer made of dipolar molecules sandwiched in between the 2D material and the SiO2 dielectric substrate. The chemical composition of the films of quinonemonoimine zwitterion molecules adsorbed onto SiO2 has been explored by means of X-ray photoemission and mass spectroscopy. Graphene-based devices are then fabricated by transferring the 2D material onto the molecular film, followed by the deposition of top source-drain electrodes. The degree of supramolecular order in disordered films of dipolar molecules was found to be partially improved as a result of the electric field at low temperatures, as revealed by the emergence of hysteresis in the transfer curves of the transistors. The use of molecules from the same family, which are suitably designed to interact with the dielectric surface, results in the disappearance of the hysteresis. DFT calculations confirm that the dressing of the molecules by an external electric field exhibits multiple minimal energy landscapes that explain the thermally stabilized capacitive coupling observed. This study demonstrates that the design and exploitation of ad hoc molecules as an interlayer between a dielectric substrate and graphene represents a powerful tool for tuning the electrical properties of the 2D material. Conversely, graphene can be used as an indicator of the stability of molecular layers, by providing insight into the energetics of ordering of dipolar molecules under the effect of electrical gating.

13.
Adv Mater ; 30(38): e1802478, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30084135

ABSTRACT

Fabrication and spintronics properties of 2D-0D heterostructures are reported. Devices based on graphene ("Gr")-aluminium nanoclusters heterostructures show robust and reproducible single-electron transport features, in addition to spin-dependent functionality when using a top magnetic electrode. The magnetic orientation of this single ferromagnetic electrode enables the modulation of the environmental charge experienced by the aluminium nanoclusters. This anisotropic magneto-Coulomb effect, originating from spin-orbit coupling within the ferromagnetic electrode, provides tunable spin valve-like magnetoresistance signatures without the requirement of spin coherent charge tunneling. These results extend the capability of Gr to act both as electrode and as a platform for the growth of 2D-0D mixed-dimensional van der Waals heterostructures, providing magnetic functionalities in the Coulomb blockade regime on scalable spintronic devices. These heterostructures pave the way towards novel device architectures at the crossroads of 2D material physics and spin electronics.

14.
Nanotechnology ; 29(36): 365201, 2018 Sep 07.
Article in English | MEDLINE | ID: mdl-29894980

ABSTRACT

The predominance of interface resistance makes current crowding ubiquitous in short channel organic electronics devices but its impact on spin transport has never been considered. We investigate electrochemically doped nanoscale PBTTT short channel devices and observe the smallest reported values of crowding lengths, found for sub-100 nm electrodes separation. These observed values are nevertheless exceeding the spin diffusion lengths reported in the literature. We discuss here how current crowding can be taken into account in the framework of the Fert-Jaffrès model of spin current propagation in heterostructures, and predict that the anticipated resulting values of magnetoresistance can be significantly reduced. Current crowding therefore impacts spin transport applications and interpretation of the results on spin valve devices.

15.
J Phys Condens Matter ; 30(30): 305503, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-29916814

ABSTRACT

A thermal component to the soft x-ray induced spin crossover transition exists in the switching of a spin crossover compound (complex [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) combined with the dipolar molecular additives (zwitterionic p-benzoquinonemonoimine C6H2([Formula: see text])2([Formula: see text])2). The addition of the zwitterionic molecule locks the Fe(II) complex in a largely low spin state configuration over an unusually broad temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. It is demonstrated here that the process of exciting the [Fe{H2B(pz)2}2(bipy)] moiety, in the presence of with C6H2([Formula: see text])2([Formula: see text])2, to an electronic state characteristic of the high spin state though incident x-ray fluences, has a thermal activation energies are determined to 14-18 meV for a range of mixing ratios from 1:2 to 1:10. Those activation energies are also significantly reduced as compared to values of 60-80 meV found for nanometer thin films of [Fe{H2B(pz)2}2(bipy)] on SiO2.

16.
ACS Appl Mater Interfaces ; 9(41): 36173-36180, 2017 Oct 18.
Article in English | MEDLINE | ID: mdl-28956432

ABSTRACT

Self-doped colloidal quantum dots (CQDs) attract a strong interest for the design of a new generation of low-cost infrared (IR) optoelectronic devices because of their tunable intraband absorption feature in the mid-IR region. However, very little remains known about their electronic structure which combines confinement and an inverted band structure, complicating the design of optimized devices. We use a combination of IR spectroscopy and photoemission to determine the absolute energy levels of HgSe CQDs with various sizes and surface chemistries. We demonstrate that the filling of the CQD states ranges from 2 electrons per CQD at small sizes (<5 nm) to more than 18 electrons per CQD at large sizes (≈20 nm). HgSe CQDs are also an interesting platform to observe vanishing confinement in colloidal nanoparticles. We present lines of evidence for a semiconductor-to-metal transition at the CQD level, through temperature-dependent absorption and transport measurements. In contrast with bulk systems, the transition is the result of the vanishing confinement rather than the increase of the doping level.

17.
Adv Mater ; 29(39)2017 Oct.
Article in English | MEDLINE | ID: mdl-28846811

ABSTRACT

The Fe(II) spin crossover complex [Fe{H2 B(pz)2 }2 (bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) can be locked in a largely low-spin-state configuration over a temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. This locking of the spin state is achieved for nanometer thin films of this complex in two distinct ways: through substrate interactions with dielectric substrates such as SiO2 and Al2 O3 , or in powder samples by mixing with the strongly dipolar zwitterionic p-benzoquinonemonoimine C6 H2 (-⋯ NH2 )2 (-⋯ O)2 . Remarkably, it is found in both cases that incident X-ray fluences then restore the [Fe{H2 B(pz)2 }2 (bipy)] moiety to an electronic state characteristic of the high spin state at temperatures of 200 K to above room temperature; that is, well above the spin crossover transition temperature for the pristine powder, and well above the temperatures characteristic of light- or X-ray-induced excited-spin-state trapping. Heating slightly above room temperature allows the initial locked state to be restored. These findings, supported by theory, show how the spin crossover transition can be manipulated reversibly around room temperature by appropriate design of the electrostatic and chemical environment.

18.
Adv Mater ; 29(9)2017 Mar.
Article in English | MEDLINE | ID: mdl-28009460

ABSTRACT

Unique insights into magnetotransport in 20 nm ligand-free La0.67 Sr0.33 MnO3 perovskite nanocrystals of nearly perfect crystalline quality reveal a chemically altered 0.8 nm thick surface layer that triggers exceptionally large magnetoresistance at low temperature, independently of the spin polarization of the ferromagnetic core. This discovery shows how the nanoscale impacts magnetotransport in a material widely spread as electrode in hybrid spintronic devices.

19.
Adv Mater ; 29(3)2017 Jan.
Article in English | MEDLINE | ID: mdl-27869338

ABSTRACT

Large assemblies of self-organized aluminum nanoclusters embedded in an oxide layer are formed on graphene templates and used to build tunnel-junction devices. Unexpectedly, single-electron-transport behavior with well-defined Coulomb oscillations is observed for a record junction area of up to 100 µm2 containing millions of metal islands. Such graphene-metal nanocluster hybrid materials offer new prospects for single-electron electronics.

20.
Nanotechnology ; 27(24): 245706, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27159190

ABSTRACT

We observe, as a function of temperature, a second order magnetic phase transition in nanometric Cr2O3 clusters that are epitaxially embedded in an insulating MgO matrix. They are investigated through their tunnel magneto-resistance signature, the MgO layer being used as a tunnel barrier. We infer the small magnetic dipoles carried by the Cr2O3 clusters and provide evidence of a magnetic phase transition at low temperature in those clusters: they evolve from an anti ferromagnetic state, with zero net moment close to 0 K, to a weak ferromagnetic state that saturates above about 10 K. The influence of magneto-electric effects on the weak ferromagnetic phase is also striking: the second order transition temperature turns out to be linearly dependent on the applied electric field.

SELECTION OF CITATIONS
SEARCH DETAIL