Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(25): 11162-11174, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38857410

ABSTRACT

Thermal treatment has emerged as a promising approach for either the end-of-life treatment or regeneration of granular activated carbon (GAC) contaminated with per- and polyfluoroalkyl substances (PFAS). However, its effectiveness has been limited by the requirement for high temperatures, the generation of products of incomplete destruction, and the necessity to scrub HF in the flue gas. This study investigates the use of common alkali and alkaline-earth metal additives to enhance the mineralization of perfluorooctanesulfonate (PFOS) adsorbed onto GAC. When treated at 800 °C without an additive, only 49% of PFOS was mineralized to HF. All additives tested demonstrated improved mineralization, and Ca(OH)2 had the best performance, achieving a mineralization efficiency of 98% in air or N2. Its ability to increase the reaction rate and shift the byproduct selectivity suggests that its role may be catalytic. Moreover, additives reduced HF in the flue gas by instead reacting with the additive to form inorganic fluorine (e.g., CaF2) in the starting waste material. A hypothesized reaction mechanism is proposed that involves the electron transfer from O2- defect sites of CaO to intermediates formed during the thermal decomposition of PFOS. These findings advocate for the use of additives in the thermal treatment of GAC for disposal or reuse, with the potential to reduce operating costs and mitigate the environmental impact associated with incinerating PFAS-laden wastes.


Subject(s)
Alkanesulfonic Acids , Charcoal , Fluorocarbons , Charcoal/chemistry , Alkanesulfonic Acids/chemistry , Fluorocarbons/chemistry , Metals, Alkaline Earth/chemistry , Adsorption , Alkalies/chemistry , Hot Temperature
2.
Environ Sci Technol ; 58(2): 1312-1320, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38173246

ABSTRACT

Sunlight irradiation is the predominant process for degrading plastics in the environment, but our current understanding of the degradation of smaller, submicron (<1000 nm) particles is limited due to prior analytical constraints. We used infrared photothermal heterodyne imaging (IR-PHI) to simultaneously analyze the chemical and morphological changes of single polystyrene (PS) particles (∼1000 nm) when exposed to ultraviolet (UV) irradiation (λ = 250-400 nm). Within 6 h of irradiation, infrared bands associated with the backbone of PS decreased, accompanied by a reduction in the particle size. Concurrently, the formation of several spectral features due to photooxidation was attributed to ketones, carboxylic acids, aldehydes, esters, and lactones. Spectral outcomes were used to present an updated reaction scheme for the photodegradation of PS. After 36 h, the average particle size was reduced to 478 ± 158 nm. The rates of size decrease and carbonyl band area increase were -24 ± 3.0 nm h-1 and 2.1 ± 0.6 cm-1 h-1, respectively. Using the size-related rate, we estimated that under peak terrestrial sunlight conditions, it would take less than 500 h for a 1000 nm PS particle to degrade to 1 nm.


Subject(s)
Polystyrenes , Water Pollutants, Chemical , Photolysis , Plastics , Ultraviolet Rays , Sunlight
3.
Water Res ; 226: 119206, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36244141

ABSTRACT

The fate and transport of nanoparticles (NPs) in streams is critical for understanding their overall environmental impact. Using a unique field-scale stream at the Notre Dame-Linked Experimental Ecosystem Facility, we investigated the impact of biofilms and the presence of dissolved organic matter (DOM) on the transport of titanium dioxide (TiO2) NPs. Experimental breakthrough curves were analyzed using temporal moments and fit using a mobile-immobile model. The presence of biofilms in the stream severely reduced the transport of the TiO2 NPs, but this was mitigated by the presence of DOM. Under minimal biofilm conditions, the presence of DOM increased the mass recovery of TiO2 from 4.2% to 32% for samples taken 50 m downstream. For thriving biofilm conditions only 0.5% of the TiO2 mass was recovered (50 m), but the presence of DOM improved the mass recovery TiO2 to 36%. The model was suitable for predicting early, peak, tail, and truncation time portions of the breakthrough curves, which attests to its ability to capture a range of processes in the mobile and immobile domains of the stream. The model outcomes supported the hypothesis that DOM changed the interaction of NP-biofilm from an irreversible to a reversible process. Collectively, these outcomes stress the importance of considering biogeological complexity when predicting the transport of NPs in streams.


Subject(s)
Dissolved Organic Matter , Nanoparticles , Ecosystem , Titanium , Biofilms
4.
Environ Sci Technol ; 56(9): 5355-5370, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35446563

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are fluorinated organic chemicals that are concerning due to their environmental persistence and adverse human and ecological effects. Remediation of environmental PFAS contamination and their presence in consumer products have led to the production of solid and liquid waste streams containing high concentrations of PFASs, which require efficient and cost-effective treatment solutions. PFASs are challenging to defluorinate by conventional and advanced destructive treatment processes, and physical separation processes produce waste streams (e.g., membrane concentrate, spent activated carbon) requiring further post-treatment. Incineration and other thermal treatment processes are widely available, but their use in managing PFAS-containing wastes remains poorly understood. Under specific operating conditions, thermal treatment is expected to mineralize PFASs, but the degradation mechanisms and pathways are unknown. In this review, we critically evaluate the thermal decomposition mechanisms, pathways, and byproducts of PFASs that are crucial to the design and operation of thermal treatment processes. We highlight the analytical capabilities and challenges and identify research gaps which limit the current understanding of safely applying thermal treatment to destroy PFASs as a viable end-of-life treatment process.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Charcoal , Fluorocarbons/analysis , Humans , Incineration , Water Pollutants, Chemical/analysis
5.
Environ Sci Technol ; 55(23): 15891-15899, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34747612

ABSTRACT

A key challenge for addressing micro- and nanoplastics (MNPs) in the environment is being able to characterize their chemical properties, morphologies, and quantities in complex matrices. Current techniques, such as Fourier transform infrared spectroscopy, provide these broad characterizations but are unsuitable for studying MNPs in spectrally congested or complex chemical environments. Here, we introduce a new, super-resolution infrared absorption technique to characterize MNPs, called infrared photothermal heterodyne imaging (IR-PHI). IR-PHI has a spatial resolution of ∼300 nm and can determine the chemical identity, morphology, and quantity of MNPs in a single analysis with high sensitivity. Specimens are supported on CaF2 coverslips under ambient conditions from where we (1) quantify MNPs from nylon tea bags after steeping in ultrapure water at 25 and 95 °C, (2) identify MNP chemical or morphological changes after steeping at 95 °C, and (3) chemically identify MNPs in sieved road dust. In all cases, no special sample preparation was required. MNPs released from nylon tea bags at 25 °C were fiber-like and had characteristic IR frequencies corresponding to thermally extruded nylon. At 95 °C, degradation of the nylon chemical structure was observed via the disappearance of amide group IR frequencies, indicating chain scission of the nylon backbone. This degradation was also observed through morphological changes, where MNPs altered shape from fiber-like to quasi-spherical. In road dust, IR-PHI analysis reveals the presence of numerous aggregate and single-particle (<3 µm) MNPs composed of rubber and nylon.


Subject(s)
Microplastics , Water Pollutants, Chemical , Dust , Nylons , Plastics , Water Pollutants, Chemical/analysis
6.
Water Res ; 187: 116425, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32979581

ABSTRACT

Natural wetlands have been recognized as a natural reactor for degradation and elimination of environmental pollutants. The Upo Wetland, the largest inland wetland in Korea, is mainly surrounded by agricultural lands and it is susceptible to contamination from excess nutrient loads and synthetic organic contaminants (SOCs) (e.g., pesticides). The aim of this study was to identify major SOCs in the wetland and evaluate their degradation. We used high resolution mass spectrometry (HRMS) with a two-step analysis approach (i.e., 1st analysis for target measurement along with suspect and non-target screening (SNTS) and 2nd analysis for complimentary suspect screening) to identify and quantify the transformation products (TPs) of the identified parent SOCs. Quantitative analysis of 30 targets, mainly including pesticides, showed that fungicides were the major SOCs detected in the wetland, accounting for about 50% of the composition ratio of the total SOCs quantified. Orysastrobin occurred at the highest mean concentration (>700 ng/L), followed by two other fungicides, carbendazim and tricyclazole. The first analysis (SNTS) tentatively identified 39 TPs (30 by suspect, 9 by non-target screening) of 14 parent pesticides. Additionally, the second analysis (complimentary suspect screening) identified 9 more TPs. Among the 48 total TPs identified, 7 were confirmed with reference standards. The identification of the remaining TPs had a high confidence level (e.g., level 2 or 3). Regarding transport though the wetland, most TPs showed greater peak area ratios (i.e., the relative portion of chromatographic area of the TPs to the parent compound) at the outlet point of the wetland compared to the inlet point. The risk quotient, which was calculated using the concentrations of parent compounds, decreased toward the outlet, demonstrating the degradation capacity of the wetland. The estimates for biodegradability, hydrophobicity, and toxicity by an in-silico quantitative structure-activity relationship (QSAR) model indicated a lower half-life, lower logDOW, and greater effect concentration for most TPs compared to the parent compounds. Based on these results, we conclude that natural wetlands play a role as an eco-friendly reactor for degrading SOCs to form numerous TPs that are lower risk than the parent compounds.


Subject(s)
Environmental Pollutants , Pesticides , Water Pollutants, Chemical , Pesticides/analysis , Republic of Korea , Water Pollutants, Chemical/analysis , Wetlands
7.
Water Res ; 185: 116199, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32726717

ABSTRACT

The catalytic hydrogel membrane reactor (CHMR) is a promising new technology for hydrogenation of aqueous contaminants in drinking water. It offers numerous benefits over conventional three-phase reactors, including immobilization of nano-catalysts, high reactivity, and control over the hydrogen (H2) supply concentration. In this study, a computational model of the CHMR was developed using AQUASIM and calibrated with 32 experimental datasets for a nitrite (NO2-)-reducing CHMR using palladium (Pd) nano-catalysts (~4.6 nm). The model was then used to identify key factors impacting the behavior of the CHMR, including hydrogel catalyst density, H2 supply pressure, influent and bulk NO2- concentrations, and hydrogel thickness. Based on the model calibration, the reaction rate constants for the NO2- steady-state adsorption Hinshelwood reaction equation, k1 and k2, were 0.0039 m3 mole-Pd-1 s-1 and 0.027 (mole-H2 m3)1/2 mole-Pd-1 s-1, respectively. The reactant flux, which is the overall NO2- removal rate for the CHMR, is affected by the NO2- reduction rate at each catalyst site, which is in turn controlled by the available NO2- and H2 concentrations that are regulated by their mass transport behavior. Reactant transport in the CHMR is counter-diffusional. So for thick hydrogels, the concurrent concentrations of NO2- and H2 are limiting in the middle region along the x-y plane of the hydrogel, which results in a low overall NO2- removal rate (i.e., flux). Thinner hydrogels provide higher concurrent reactant concentrations throughout the hydrogel, resulting in higher fluxes. However, if the hydrogel is too thin, the flux becomes limited by the amount of Pd that can be loaded, and unused H2 can diffuse into the bulk and promote biofilm growth. The hydrogel thickness that maximized the NO2- flux ranged between 30 and 150 µm for the conditions tested. The computational model is the first to describe CHMR behavior, and it is an important tool for the further development of the CHMR. It also can be adapted to assess CHMR behavior for other contaminants or catalysts or used for other types of interfacial catalytic membrane reactors.


Subject(s)
Hydrogels , Nitrites , Catalysis , Hydrogen , Palladium
8.
Water Res ; 174: 115593, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32086133

ABSTRACT

The catalytic hydrogel membrane reactor (CHMR) is an interfacial membrane process that uses nano-sized catalysts for the hydrogenation of oxidized contaminants in drinking water. In this study, the CHMR was operated as a continuous-flow reactor using nitrite (NO2-) as a model contaminant and palladium (Pd) as a model catalyst. Using the overall bulk reaction rate for NO2- reduction as a metric for catalytic activity, we evaluated the effect of the hydrogen gas (H2) delivery method to the CHMR, the initial H2 and NO2- concentrations, Pd density in the hydrogel, and the presence of Pd-deactivating species. The chemical stability of the catalytic hydrogel was evaluated in the presence of aqueous cations (H+, Na+, Ca2+) and a mixture of ions in a hard groundwater. Delivering H2 to the CHMR lumens using a vented operation mode, where the reactor is sealed and the lumens are periodically flushed to the atmosphere, allowed for a combination of a high H2 consumption efficiency and catalytic activity. The overall reaction rate of NO2- was dependent on relative concentrations of H2 and NO2- at catalytic sites, which was governed by both the chemical reaction and mass transport rates. The intrinsic catalytic reaction rate was combined with a counter-diffusional mass transport component in a 1-D computational model to describe the CHMR. Common Pd-deactivating species [sulfite, bisulfide, natural organic matter] hindered the reaction rate, but the hydrogel afforded some protection from deactivation compared to a batch suspension. No chemical degradation of the hydrogel structure was observed for a model water (pH > 4, Na+, Ca2+) and a hard groundwater after 21 days of exposure, attesting to its stability under natural water conditions.


Subject(s)
Hydrogels , Nitrites , Catalysis , Hydrogenation , Oxidation-Reduction , Palladium
9.
RSC Adv ; 10(16): 9324-9334, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-35497240

ABSTRACT

Two-dimensional molybdenum disulfide (MoS2) is emerging as a catalyst for energy and environmental applications. Recent studies have suggested the stability of MoS2 is questionable when exposed to oxidizing conditions found in water and air. In this study, the aqueous stability of 2H- and 1T-MoS2 and 2H-MoS2 protected with a carbon shell was evaluated in the presence of model oxidants (O2, NO2 -, BrO3 -). The MoS2 electrocatalytic performance and stability was characterized using linear sweep voltammetry and chronoamperometry. In the presence of dissolved oxygen (DO) only, 2H- and 1T-MoS2 were relatively stable, with SO4 2- formation of only 2.5% and 3.1%, respectively. The presence of NO2 - resulted in drastically different results, with SO4 2- formations of 11% and 14% for 2H- and 1T-MoS2, respectively. When NO2 - was present without DO, the 2H- and 1T-MoS2 remained relatively stable with SO4 2- formations of only 4.2% and 3.3%, respectively. Similar results were observed when BrO3 - was used as an oxidant. Collectively, these results indicate that the oxidation of 2H- and 1T-MoS2 can be severe in the presence of these aqueous oxidants but that DO is also required. To investigate the ability of a capping agent to protect the MoS2 from oxidation, a carbon shell was added to 2H-MoS2. In a batch suspension in the presence of DO and NO2 -, the 2H-MoS2 with the carbon shell exhibited good stability with no oxidation observed. The activity of 2H-MoS2 electrodes was then evaluated for the hydrogen evolution reaction by a Tafel analysis. The carbon shell improved the activity of 2H-MoS2 with a decrease in the Tafel slope from 451 to 371 mV dec-1. The electrode stability, characterized by chronopotentiometry, was also enhanced for the 2H-MoS2 coated with a carbon shell, with no marked degradation in current density observed over the reaction period. Because of the instability exhibited by unprotected MoS2, it will only be a useful catalyst if measures are taken to protect the surface from oxidation. Further, given the propensity of MoS2 to undergo oxidation in aqueous solutions, caution should be used when describing it as a true catalyst for reduction reactions (e.g., H2 evolution), unless proven otherwise.

10.
Water Res ; 168: 115130, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31606555

ABSTRACT

Electrochemical systems have emerged as an advantageous approach for decentralized management of source-separated urine with the possibility of recovering or removing nutrients and generating energy. In this study, the kinetics and byproduct selectivity of the electrolytic removal of urea were investigated using a boron doped diamond working electrode under varied operational conditions with a primary focus on comparing undivided and divided reactors. The urea removal rate in the undivided and divided reactors was similar, but the divided reactor had an increased required cell voltage needed to maintain the equivalent current density. The current efficiency was similar for 0.1, 0.25, and 0.5 A (33.3, 83.3, 167 mA/cm2), suggesting no interference from competing reactions at higher potentials. In a divided reactor, increasing the anolyte pH reduced the urea removal rate presumably from hydroxyl radical scavenging by hydroxide. Further, for all divided reactor experiments, the final pH was less than 1, suggesting that the transport of protons across the ion exchange membrane to the cathode was slower than the oxidation reactions producing protons. The nitrogen byproduct selectivity was markedly different in the undivided and divided reactors. In both reactors, nitrate (NO3-) formed as the main byproduct at the anode, but in the undivided reactor it was reduced at the stainless steel cathode to ammonia. In the presence of 1 M chloride, the urea removal kinetics improved from the generation of reactive chlorine species, and the byproduct selectivity was shifted away from NO3- to presumably chloramines and N2. Overall, these results indicate that the electrochemical reactor configuration should be carefully considered depending on the desired outcome of treating source-separated urine (e.g., nitrogen recovery, H2 generation).


Subject(s)
Boron , Diamond , Electrodes , Electrolysis , Kinetics , Nitrogen , Oxidation-Reduction , Urea
11.
Environ Sci Technol ; 53(11): 6492-6500, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31083982

ABSTRACT

Heterogeneous hydrogenation catalysis is a promising approach for treating oxidized contaminants in drinking water, but scale-up has been limited by the challenge of immobilization of the catalyst while maintaining efficient mass transport and reaction kinetics. We describe a new process that addresses this issue: the catalytic hydrogel membrane (CHM) reactor. The CHM consists of a gas-permeable hollow-fiber membrane coated with an alginate-based hydrogel containing catalyst nanoparticles. The CHM benefits from counter-diffusional transport within the hydrogel, where H2 diffuses from the interior of the membrane and contaminant species (e.g., NO2-, O2) diffuse from the bulk aqueous solution. The reduction of O2 and NO2- were investigated using CHMs with varying palladium catalyst densities, and mass transport of reactive species in the catalytic hydrogel was characterized using microsensors. The thickness of the "reactive zone" within the hydrogel affected the reaction rate and byproduct selectivity, and it was dependent on catalyst density. In a continuously mixed flow reactor test using groundwater, the CHM activity was stable for a 3 day period. Outcomes of this study illustrate the potential of the CHM as a scalable process in the treatment of aqueous contaminants.


Subject(s)
Hydrogels , Palladium , Catalysis , Hydrogenation , Oxidation-Reduction
12.
Environ Sci Technol ; 52(15): 8638-8648, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29901992

ABSTRACT

Cyclic voltammetry (CV) and in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy were used to investigate the effect of major urine compounds on the electro-oxidation activity of urea using a nickel cobaltite (NiCo2O4 ) catalyst. As a substrate, carbon paper exhibited better benchmark potential and current values compared with stainless steel and fluorine-doped tin oxide glass, which was attributed to its greater active surface area per electrode geometric area. CV analysis of synthetic urine showed that phosphate, creatinine, and gelatin (i.e., proteins) had the greatest negative effect on the electro-oxidation activity of urea, with decreases in peak current up to 80% compared to that of a urea-only solution. Further investigation of the binding mechanisms of the deleterious compounds using in situ ATR-FTIR spectroscopy revealed that urea and phosphate weakly bind to NiCo2O4 through hydrogen bonding or long-range forces, whereas creatinine interacts strongly, forming deactivating inner-sphere complexes. Phosphate is presumed to disrupt the interaction between urea and NiCo2O4 by serving as a hydrogen-bond acceptor in place of catalyst sites. The weak binding of urea supports the hypothesis that it is oxidized through an indirect electron transfer. Outcomes of this study contribute to the development of electrolytic systems for treating source-separated urine.


Subject(s)
Nickel , Urea , Minerals , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis
13.
J Vis Exp ; (133)2018 03 14.
Article in English | MEDLINE | ID: mdl-29608169

ABSTRACT

Visualizing the formation of multinucleated giant cells (MGCs) from living specimens has been challenging due to the fact that most live imaging techniques require propagation of light through glass, but on glass macrophage fusion is a rare event. This protocol presents the fabrication of several optical-quality glass surfaces where adsorption of compounds containing long-chain hydrocarbons transforms glass into a fusogenic surface. First, preparation of clean glass surfaces as starting material for surface modification is described. Second, a method is provided for the adsorption of compounds containing long-chain hydrocarbons to convert non-fusogenic glass into a fusogenic substrate. Third, this protocol describes fabrication of surface micropatterns that promote a high degree of spatiotemporal control over MGC formation. Finally, fabricating glass bottom dishes is described. Examples of use of this in vitro cell system as a model to study macrophage fusion and MGC formation are shown.


Subject(s)
Cell Fusion/methods , Glass/chemistry , Macrophages/cytology , Cell Fusion/instrumentation , Giant Cells/cytology
14.
Biomaterials ; 128: 160-171, 2017 06.
Article in English | MEDLINE | ID: mdl-28340410

ABSTRACT

Implantation of synthetic material, including vascular grafts, pacemakers, etc. results in the foreign body reaction and the formation of multinucleated giant cells (MGCs) at the exterior surface of the implant. Despite the long-standing premise that fusion of mononucleated macrophages results in the formation of MGCs, to date, no published study has shown fusion in context with living specimens. This is due to the fact that optical-quality glass, which is required for the majority of live imaging techniques, does not promote macrophage fusion. Consequently, the morphological changes that macrophages undergo during fusion as well as the mechanisms that govern this process remain ill-defined. In this study, we serendipitously identified a highly fusogenic glass surface and discovered that the capacity to promote fusion was due to oleamide contamination. When adsorbed on glass, oleamide and other molecules that contain long-chain hydrocarbons promoted high levels of macrophage fusion. Adhesion, an essential step for macrophage fusion, was apparently mediated by Mac-1 integrin (CD11b/CD18, αMß2) as determined by single cell force spectroscopy and adhesion assays. Micropatterned glass further increased fusion and enabled a remarkable degree of spatiotemporal control over MGC formation. Using these surfaces, we reveal the kinetics that govern MGC formation in vitro. We anticipate that the spatiotemporal control afforded by these surfaces will expedite studies designed to identify the mechanism(s) of macrophage fusion and MGC formation with implication for the design of novel biomaterials.


Subject(s)
Giant Cells/cytology , Glass/chemistry , Macrophages/cytology , Adsorption , Animals , Cell Adhesion/drug effects , Cell Fusion , Giant Cells/drug effects , Giant Cells/metabolism , HEK293 Cells , Humans , Macrophage-1 Antigen/metabolism , Macrophages/drug effects , Macrophages/metabolism , Mice, Inbred C57BL , Oleic Acids/pharmacology , Optical Phenomena , Surface Properties , Time Factors
15.
PLoS One ; 11(10): e0164712, 2016.
Article in English | MEDLINE | ID: mdl-27798677

ABSTRACT

Recent studies indicate the presence of nano-scale titanium dioxide (TiO2) as an additive in human foodstuffs, but a practical protocol to isolate and separate nano-fractions from soluble foodstuffs as a source of material remains elusive. As such, we developed a method for separating the nano and submicron fractions found in commercial-grade TiO2 (E171) and E171 extracted from soluble foodstuffs and pharmaceutical products (e.g., chewing gum, pain reliever, and allergy medicine). Primary particle analysis of commercial-grade E171 indicated that 54% of particles were nano-sized (i.e., < 100 nm). Isolation and primary particle analysis of five consumer goods intended to be ingested revealed differences in the percent of nano-sized particles from 32%‒58%. Separation and enrichment of nano- and submicron-sized particles from commercial-grade E171 and E171 isolated from foodstuffs and pharmaceuticals was accomplished using rate-zonal centrifugation. Commercial-grade E171 was separated into nano- and submicron-enriched fractions consisting of a nano:submicron fraction of approximately 0.45:1 and 3.2:1, respectively. E171 extracted from gum had nano:submicron fractions of 1.4:1 and 0.19:1 for nano- and submicron-enriched, respectively. We show a difference in particle adhesion to the cell surface, which was found to be dependent on particle size and epithelial orientation. Finally, we provide evidence that E171 particles are not immediately cytotoxic to the Caco-2 human intestinal epithelium model. These data suggest that this separation method is appropriate for studies interested in isolating the nano-sized particle fraction taken directly from consumer products, in order to study separately the effects of nano and submicron particles.


Subject(s)
Food Additives , Metal Nanoparticles , Pharmaceutical Preparations , Titanium , Cell Culture Techniques , Cell Line , Cell Survival , Chemical Fractionation/methods , Humans , Metal Nanoparticles/ultrastructure , Particle Size
16.
Water Res ; 104: 11-19, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27497627

ABSTRACT

Regulated oxidized pollutants in drinking water can have significant health effects, resulting in the need for ancillary treatment processes. Oxoanions (e.g., nitrate) are one important class of oxidized inorganic ions. Ion exchange and reverse osmosis are often used treatment processes for oxoanions, but these separation processes leave behind a concentrated waste product that still requires treatment or disposal. Photocatalysis has emerged as a sustainable treatment technology capable of catalytically reducing oxoanions directly to innocuous byproducts. Compared with the large volume of knowledge available for photocatalytic oxidation, very little knowledge exists regarding photocatalytic reduction of oxoanion pollutants. This study investigates the reduction of various oxoanions of concern in drinking water (nitrate, nitrite, bromate, perchlorate, chlorate, chlorite, chromate) using a commercial titanium dioxide photocatalyst and a polychromatic light source. Results showed that oxoanions were readily reduced under acidic conditions in the presence of formate, which served as a hole scavenger, with the first-order rate decreasing as follows: bromate > nitrite > chlorate > nitrate > dichromate > perchlorate, corresponding to rate constants of 0.33, 0.080, 0.052, 0.0074, 0.0041, and 0 cm2/photons × 1018, respectively. Only bromate and nitrite were reduced at neutral pH, with substantially lower rate constants of 0.034 and 0.0021 cm2/photons × 1018, respectively. No direct relationship between oxoanion physicochemical properties, including electronegativity of central atom, internal bond strength, and polarizability was discovered. However, observations presented herein suggest the presence of kinetic barriers unique to each oxoanion and provides a framework for investigating photocatalytic reduction mechanisms of oxoanions in order to design better photocatalysts and optimize treatment.


Subject(s)
Drinking Water , Titanium/chemistry , Bromates/chemistry , Catalysis , Nitrates/chemistry , Nitrites/chemistry , Oxidation-Reduction
17.
ACS Appl Mater Interfaces ; 7(7): 4224-32, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25633081

ABSTRACT

The use of personal protective gear made from omniphobic materials that easily shed drops of all sizes could provide enhanced protection from direct exposure to most liquid-phase biological and chemical hazards and facilitate the postexposure decontamination of the gear. In recent literature, lubricated nanostructured fabrics are seen as attractive candidates for personal protective gear due to their omniphobic and self-healing characteristics. However, the ability of these lubricated fabrics to shed low surface tension liquids after physical contact with other objects in the surrounding, which is critical in demanding healthcare and military field operations, has not been investigated. In this work, we investigate the depletion of oil from lubricated fabrics in contact with highly absorbing porous media and the resulting changes in the wetting characteristics of the fabrics by representative low and high surface tension liquids. In particular, we quantify the loss of the lubricant and the dynamic contact angles of water and ethanol on lubricated fabrics upon repeated pressurized contact with highly absorbent cellulose-fiber wipes at different time intervals. We demonstrate that, in contrast to hydrophobic nanoparticle coated microfibers, fabrics encapsulated within a polymer that swells with the lubricant retain the majority of the oil and are capable of repelling high as well as low surface tension liquids even upon multiple contacts with the highly absorbing wipes. The fabric supported lubricant-swollen polymeric films introduced here, therefore, could provide durable and easy to decontaminate protection against hazardous biological and chemical liquids.


Subject(s)
Lubricants/chemistry , Polymers/chemistry , Textiles/analysis , Hydrophobic and Hydrophilic Interactions , Materials Testing , Oils/chemistry , Protective Clothing
18.
ACS Nano ; 8(9): 8911-31, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25144856

ABSTRACT

Inhaled multiwalled carbon nanotubes (MWCNTs) may cause adverse pulmonary responses due to their nanoscale, fibrous morphology and/or biopersistance. This study tested multiple factors (dose, time, physicochemical characteristics, and administration method) shown to affect MWCNT toxicity with the hypothesis that these factors will influence significantly different responses upon MWCNT exposure. The study is unique in that (1) multiple administration methods were tested using particles from the same stock; (2) bulk MWCNT formulations had few differences (metal content, surface area/functionalization); and (3) MWCNT retention was quantified using a specialized approach for measuring unlabeled MWCNTs in rodent lungs. Male Sprague-Dawley rats were exposed to original (O), purified (P), and carboxylic acid functionalized (F) MWCNTs via intratracheal instillation and inhalation. Blood, bronchoalveolar lavage fluid (BALF), and lung tissues were collected at postexposure days 1 and 21 for quantifying biological responses and MWCNTs in lung tissues by programmed thermal analysis. At day 1, MWCNT instillation produced significant BALF neutrophilia and MWCNT-positive macrophages. Instilled O- and P-MWCNTs produced significant inflammation in lung tissues, which resolved by day 21 despite MWCNT retention. MWCNT inhalation produced no BALF neutrophilia and no significant histopathology past day 1. However, on days 1 and 21 postinhalation of nebulized MWCNTs, significantly increased numbers of MWCNT-positive macrophages were observed in BALF. Results suggest (1) MWCNTs produce transient inflammation if any despite persistence in the lungs; (2) instilled O-MWCNTs cause more inflammation than P- or F-MWCNTs; and (3) MWCNT suspension media produce strikingly different effects on physicochemical particle characteristics and pulmonary responses.


Subject(s)
Health , Nanotubes, Carbon/toxicity , Toxicity Tests , Administration, Inhalation , Animals , Bronchoalveolar Lavage Fluid , Carboxylic Acids/chemistry , Cell Differentiation/drug effects , Chemical Phenomena , Dose-Response Relationship, Drug , Instillation, Drug , Macrophages/cytology , Macrophages/drug effects , Male , Nanotubes, Carbon/chemistry , Neutrophils/cytology , Neutrophils/drug effects , Rats , Rats, Sprague-Dawley , Water/chemistry
19.
Langmuir ; 30(23): 6867-77, 2014 Jun 17.
Article in English | MEDLINE | ID: mdl-24846542

ABSTRACT

Gallium-based liquid metals are of interest for a variety of applications including flexible electronics, soft robotics, and biomedical devices. Still, nano- to microscale device fabrication with these materials is challenging because, despite having surface tension 10 times higher than water, they strongly adhere to a majority of substrates. This unusually high adhesion is attributed to the formation of a thin oxide shell; however, its role in the adhesion process has not yet been established. In this work, we demonstrate that, dependent on dynamics of formation and resulting morphology of the liquid metal-substrate interface, GaInSn adhesion can occur in two modes. The first mode occurs when the oxide shell is not ruptured as it makes contact with the substrate. Because of the nanoscale topology of the oxide surface, this mode results in minimal adhesion between the liquid metal and most solids, regardless of substrate's surface energy or texture. In the second mode, the formation of the GaInSn-substrate interface involves rupturing of the original oxide skin and formation of a composite interface that includes contact between the substrate and pieces of old oxide, bare liquid metal, and new oxide. We demonstrate that in this latter mode GaInSn adhesion is dominated by the intimate contact between new oxide and substrate. We also show that by varying the pinned contact line length using varied degrees of surface texturing, the adhesion of GaInSn in this mode can be either decreased or increased. Lastly, we demonstrate how these two adhesion modes limit microcontact printing of GaInSn patterns but can be exploited to repeatedly print individual sub-200 nm liquid metal drops.

20.
Cell Biol Toxicol ; 30(3): 169-88, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24817113

ABSTRACT

Bulk- and nano-scale titanium dioxide (TiO2) has found use in human food products for controlling color, texture, and moisture. Once ingested, and because of their small size, nano-scale TiO2 can interact with a number of epithelia that line the human gastrointestinal tract. One such epithelium responsible for nutrient absorption is the small intestine, whose constituent cells contain microvilli to increase the total surface area of the gut. Using a combination of scanning and transmission electron microscopy it was found that food grade TiO2 (E171 food additive coded) included ∼25% of the TiO2 as nanoparticles (NPs; <100 nm), and disrupted the normal organization of the microvilli as a consequence of TiO2 sedimentation. It was found that TiO2 isolated from the candy coating of chewing gum and a commercially available TiO2 food grade additive samples were of the anatase crystal structure. Exposure to food grade TiO2 additives, containing nanoparticles, at the lowest concentration tested within this experimental paradigm to date at 350 ng/mL (i.e., 100 ng/cm(2) cell surface area) resulted in disruption of the brush border. Through the use of two independent techniques to remove the effects of gravity, and subsequent TiO2 sedimentation, it was found that disruption of the microvilli was independent of sedimentation. These data indicate that food grade TiO2 exposure resulted in the loss of microvilli from the Caco-2BBe1 cell system due to a biological response, and not simply a physical artifact of in vitro exposure.


Subject(s)
Food Additives/adverse effects , Intestinal Mucosa/pathology , Microvilli/pathology , Titanium/adverse effects , Titanium/pharmacology , Caco-2 Cells , Cell Line, Tumor , Crystallography, X-Ray , Food Additives/pharmacology , Food Coloring Agents/adverse effects , Food Coloring Agents/pharmacology , Humans , Metal Nanoparticles/adverse effects , Microscopy, Electron, Transmission , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...