Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(17)2021 Aug 24.
Article in English | MEDLINE | ID: mdl-34502596

ABSTRACT

Broadband, high-resolution, heterodyne, mid-infrared absorption spectroscopy was performed with a high-speed quantum cascade (QC) detector. By strictly reducing the device capacitance and inductance via air-bridge wiring and a small mesa structure, a 3-dB frequency response over 20 GHz was obtained for the QC detector, which had a 4.6-µm peak wavelength response. In addition to the high-speed, it exhibited low noise characteristics limited only by Johnson-Nyquist noise, bias-free operation without cooling, and photoresponse linearity over a wide dynamic range. In the detector characterization, the noise-equivalent power was 7.7 × 10-11 W/Hz1/2 at 4.6 µm, and it had good photoresponse linearity up to 250 mW, with respect to the input light power. Broadband and high-accuracy molecular spectroscopy based on heterodyne detection was demonstrated by means of two distributed-feedback 4.5-µm QC lasers. Specifically, several nitrous oxide absorption lines were acquired over a wavelength range of 0.8 cm-1 with the wide-band QC detector.

2.
Opt Express ; 24(15): 16357-65, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27464089

ABSTRACT

We present ultra-broadband room temperature monolithic terahertz quantum cascade laser (QCL) sources based on intra-cavity difference frequency generation, emitting continuously more than one octave in frequency between 1.6 and 3.8 THz, with a peak output power of ~200 µW. Broadband terahertz emission is realized by nonlinear mixing between single-mode and multi-mode spectra due to distributed feedback grating and Fabry-Perot cavity, respectively, in a mid-infrared QCL with dual-upper-state active region design. Besides, at low temperature of 150 K, the device produces a peak power of ~1.0 mW with a broadband THz emission centered at 2.5 THz, ranging from 1.5 to 3.7 THz.

3.
Opt Express ; 22(17): 19930-5, 2014 Aug 25.
Article in English | MEDLINE | ID: mdl-25321203

ABSTRACT

Broadband spectral tuning in the long wavelength range (greater than 10 µm) was demonstrated with an external-cavity quantum cascade laser. The tunable wavelength of the laser ranged from 9.5 to 11.4 µm (176 cm(-1); corresponding to 18% of the center wavelength) in continuous wave (cw) operation at room temperature, without any anti-reflection coating. The gain chip based on the anti-crossed dual-upper-state (DAU) design provided a cw lasing up to 300 K, with a low threshold current density of 2.1 kA/cm2. The highly stable broadband spectral tuning and high laser performance were enabled by the spectrally homogeneous gain profile of the anti-crossed DAU active region.

4.
Opt Express ; 19(3): 2694-701, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369090

ABSTRACT

Broad-gain operation of λ~8.7 µm quantum cascade lasers based on dual-upper-state to multiple-lower-state transition design is reported. The devices exhibit surprisingly wide (~500 cm(-1)) electroluminescence spectra which are very insensitive to voltage and temperature changes above room temperature. With recourse to the temperature-insensitivity of electroluminescence spectra, the lasers demonstrate an extremely-weak temperature-dependence of laser performances: T0-value of 510 K, associated with a room temperature threshold current density of 2.6 kA/cm2. In addition, despite such wide gain spectra, room temperature, continuous wave operation of the laser with buried hetero structure is achieved.


Subject(s)
Computer-Aided Design , Lasers , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...