Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Curr Opin Neurobiol ; 82: 102763, 2023 10.
Article in English | MEDLINE | ID: mdl-37611531

ABSTRACT

Locomotion is a complex motor task executed by spinal neurons. Given the diversity of spinal cord neurons, linking neuronal cell type to function is a challenge. Molecular identification of broad spinal interneuronal classes provided a great advance. Recent studies have used other classifiers, including location, electrophysiological properties, and connectivity, in addition to gene profiling, to narrow the acuity with which groups of neurons can be related to specific functions. However, there are also functional populations without a clear identifier, as exemplified by rhythm generating neurons. Other considerations, including experience or plasticity, add a layer of complexity to the definition of functional subpopulations of spinal neurons, but spinal cord injury may provide insight.


Subject(s)
Neurons , Spinal Cord Injuries , Humans , Interneurons , Locomotion
2.
Front Neural Circuits ; 16: 957084, 2022.
Article in English | MEDLINE | ID: mdl-35991345

ABSTRACT

Spinal cord neurons integrate sensory and descending information to produce motor output. The expression of transcription factors has been used to dissect out the neuronal components of circuits underlying behaviors. However, most of the canonical populations of interneurons are heterogeneous and require additional criteria to determine functional subpopulations. Neurons expressing the transcription factor Shox2 can be subclassified based on the co-expression of the transcription factor Chx10 and each subpopulation is proposed to have a distinct connectivity and different role in locomotion. Adult Shox2 neurons have recently been shown to be diverse based on their firing properties. Here, in order to subclassify adult mouse Shox2 neurons, we performed multiple analyses of data collected from whole-cell patch clamp recordings of visually-identified Shox2 neurons from lumbar spinal slices. A smaller set of Chx10 neurons was included in the analyses for validation. We performed k-means and hierarchical unbiased clustering approaches, considering electrophysiological variables. Unlike the categorizations by firing type, the clusters displayed electrophysiological properties that could differentiate between clusters of Shox2 neurons. The presence of clusters consisting exclusively of Shox2 neurons in both clustering techniques suggests that it is possible to distinguish Shox2+Chx10- neurons from Shox2+Chx10+ neurons by electrophysiological properties alone. Computational clusters were further validated by immunohistochemistry with accuracy in a small subset of neurons. Thus, unbiased cluster analysis using electrophysiological properties is a tool that can enhance current interneuronal subclassifications and can complement groupings based on transcription factor and molecular expression.


Subject(s)
Interneurons , Neurons , Animals , Cluster Analysis , Electrophysiological Phenomena , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Interneurons/physiology , Mice , Neurons/metabolism , Spinal Cord/physiology , Transcription Factors/genetics
3.
Int J Mol Sci ; 23(10)2022 May 16.
Article in English | MEDLINE | ID: mdl-35628347

ABSTRACT

We describe and analyze a computational model of neural circuits in the mammalian spinal cord responsible for generating and shaping locomotor-like oscillations. The model represents interacting populations of spinal neurons, including the neurons that were genetically identified and characterized in a series of previous experimental studies. Here, we specifically focus on the ipsilaterally projecting V1 interneurons, their possible role in the spinal locomotor circuitry, and their involvement in the generation of locomotor oscillations. The proposed connections of these neurons and their involvement in different neuronal pathways in the spinal cord allow the model to reproduce the results of optogenetic manipulations of these neurons under different experimental conditions. We suggest the existence of two distinct populations of V1 interneurons mediating different ipsilateral and contralateral interactions within the spinal cord. The model proposes explanations for multiple experimental data concerning the effects of optogenetic silencing and activation of V1 interneurons on the frequency of locomotor oscillations in the intact cord and hemicord under different experimental conditions. Our simulations provide an important insight into the organization of locomotor circuitry in the mammalian spinal cord.


Subject(s)
Neurons , Spinal Cord , Animals , Computer Simulation , Interneurons/physiology , Mammals/physiology , Spinal Cord/physiology
4.
Elife ; 112022 04 27.
Article in English | MEDLINE | ID: mdl-35476640

ABSTRACT

Speed-dependent interlimb coordination allows animals to maintain stable locomotion under different circumstances. The V3 neurons are known to be involved in interlimb coordination. We previously modeled the locomotor spinal circuitry controlling interlimb coordination (Danner et al., 2017). This model included the local V3 neurons that mediate mutual excitation between left and right rhythm generators (RGs). Here, our focus was on V3 neurons involved in ascending long propriospinal interactions (aLPNs). Using retrograde tracing, we revealed a subpopulation of lumbar V3 aLPNs with contralateral cervical projections. V3OFF mice, in which all V3 neurons were silenced, had a significantly reduced maximal locomotor speed, were unable to move using stable trot, gallop, or bound, and predominantly used a lateral-sequence walk. To reproduce this data and understand the functional roles of V3 aLPNs, we extended our previous model by incorporating diagonal V3 aLPNs mediating inputs from each lumbar RG to the contralateral cervical RG. The extended model reproduces our experimental results and suggests that locally projecting V3 neurons, mediating left-right interactions within lumbar and cervical cords, promote left-right synchronization necessary for gallop and bound, whereas the V3 aLPNs promote synchronization between diagonal fore and hind RGs necessary for trot. The model proposes the organization of spinal circuits available for future experimental testing.


Subject(s)
Locomotion , Neurons , Animals , Locomotion/physiology , Mice , Neurons/physiology , Walking
5.
Cereb Cortex ; 32(4): 770-795, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34347028

ABSTRACT

Neuromorphological defects underlie neurodevelopmental disorders and functional defects. We identified a function for Rpsa in regulating neuromorphogenesis using in utero electroporation to knockdown Rpsa, resulting in apical dendrite misorientation, fewer/shorter extensions, and decreased spine density with altered spine morphology in upper neuronal layers and decreased arborization in upper/lower cortical layers. Rpsa knockdown disrupts multiple aspects of cortical development, including radial glial cell fiber morphology and neuronal layering. We investigated Rpsa's ligand, PEDF, and interacting partner on the plasma membrane, Itga6. Rpsa, PEDF, and Itga6 knockdown cause similar phenotypes, with Rpsa and Itga6 overexpression rescuing morphological defects in PEDF-deficient neurons in vivo. Additionally, Itga6 overexpression increases and stabilizes Rpsa expression on the plasma membrane. GCaMP6s was used to functionally analyze Rpsa knockdown via ex vivo calcium imaging. Rpsa-deficient neurons showed less fluctuation in fluorescence intensity, suggesting defective subthreshold calcium signaling. The Serpinf1 gene coding for PEDF is localized at chromosome 17p13.3, which is deleted in patients with the neurodevelopmental disorder Miller-Dieker syndrome. Our study identifies a role for Rpsa in early cortical development and for PEDF-Rpsa-Itga6 signaling in neuromorphogenesis, thus implicating these molecules in the etiology of neurodevelopmental disorders like Miller-Dieker syndrome and identifying them as potential therapeutics.


Subject(s)
Dendrites , Neurons , Cell Membrane , Dendrites/physiology , Humans , Integrin alpha6 , Ligands , Morphogenesis , Neurons/physiology
6.
J Neurosci ; 2021 05 13.
Article in English | MEDLINE | ID: mdl-34006587

ABSTRACT

Neural circuitry generating locomotor rhythm and pattern is located in the spinal cord. Most spinal cord injuries (SCI) occur above the level of spinal locomotor neurons; therefore, these circuits are a target for improving motor function after SCI. Despite being relatively intact below the injury, locomotor circuitry undergoes substantial plasticity with the loss of descending control. Information regarding cell-type specific plasticity within locomotor circuits is limited. Shox2 interneurons (INs) have been linked to locomotor rhythm generation and patterning, making them a potential therapeutic target for the restoration of locomotion after SCI. The goal of the present study was to identify SCI-induced plasticity at the level of Shox2 INs in a complete thoracic transection model in adult male and female mice. Whole cell patch clamp recordings of Shox2 INs revealed minimal changes in intrinsic excitability properties after SCI. However, afferent stimulation resulted in mixed excitatory and inhibitory input to Shox2 INs in uninjured mice which became predominantly excitatory after SCI. Shox2 INs were differentially modulated by serotonin (5-HT) in a concentration-dependent manner in uninjured conditions but following SCI, 5-HT predominantly depolarized Shox2 INs. 5-HT7 receptors mediated excitatory effects on Shox2 INs from both uninjured and SCI mice, but activation of 5-HT2B/2C receptors enhanced excitability of Shox2 INs only after SCI. Overall, SCI alters sensory afferent input pathways to Shox2 INs and 5-HT modulation of Shox2 INs to enhance excitatory responses. Our findings provide relevant information regarding the locomotor circuitry response to SCI that could benefit strategies to improve locomotion after SCI.SIGNIFICANCE STATEMENTCurrent therapies to gain locomotor control after SCI target spinal locomotor circuitry. Improvements in therapeutic strategies will require a better understanding of the SCI-induced plasticity within specific locomotor elements and their controllers, including sensory afferents and serotonergic modulation. Here, we demonstrate that excitability and intrinsic properties of Shox2 interneurons, which contribute to the generation of the locomotor rhythm and pattering, remain intact after SCI. However, SCI induces plasticity in both sensory afferent pathways and serotonergic modulation, enhancing the activation and excitation of Shox2 interneurons. Our findings will impact future strategies looking to harness these changes with the ultimate goal of restoring functional locomotion after SCI.

7.
Int J Mol Sci ; 22(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800863

ABSTRACT

The ability to sense and move within an environment are complex functions necessary for the survival of nearly all species. The spinal cord is both the initial entry site for peripheral information and the final output site for motor response, placing spinal circuits as paramount in mediating sensory responses and coordinating movement. This is partly accomplished through the activation of complex spinal microcircuits that gate afferent signals to filter extraneous stimuli from various sensory modalities and determine which signals are transmitted to higher order structures in the CNS and to spinal motor pathways. A mechanistic understanding of how inhibitory interneurons are organized and employed within the spinal cord will provide potential access points for therapeutics targeting inhibitory deficits underlying various pathologies including sensory and movement disorders. Recent studies using transgenic manipulations, neurochemical profiling, and single-cell transcriptomics have identified distinct populations of inhibitory interneurons which express an array of genetic and/or neurochemical markers that constitute functional microcircuits. In this review, we provide an overview of identified neural components that make up inhibitory microcircuits within the dorsal and ventral spinal cord and highlight the importance of inhibitory control of sensorimotor pathways at the spinal level.


Subject(s)
Afferent Pathways/physiology , Interneurons/physiology , Movement/physiology , Neural Inhibition/physiology , Sensation/physiology , Sensory Gating/physiology , Spinal Cord/cytology , Animals , Anterior Horn Cells/chemistry , Anterior Horn Cells/classification , Anterior Horn Cells/physiology , Humans , Interneurons/chemistry , Interneurons/classification , Models, Neurological , Motor Neurons/physiology , Movement Disorders/physiopathology , Nerve Fibers/physiology , Nerve Tissue Proteins/analysis , Neuropeptides/analysis , Posterior Horn Cells/chemistry , Posterior Horn Cells/classification , Sensation Disorders/physiopathology , Sensory Receptor Cells/physiology , Spinal Cord/physiology , Synapses/physiology
8.
Front Neural Circuits ; 14: 614615, 2020.
Article in English | MEDLINE | ID: mdl-33424558

ABSTRACT

The mechanisms involved in generation of rhythmic locomotor activity in the mammalian spinal cord remain poorly understood. These mechanisms supposedly rely on both intrinsic properties of constituting neurons and interactions between them. A subset of Shox2 neurons was suggested to contribute to generation of spinal locomotor activity, but the possible cellular basis for rhythmic bursting in these neurons remains unknown. Ha and Dougherty (2018) recently revealed the presence of bidirectional electrical coupling between Shox2 neurons in neonatal spinal cords, which can be critically involved in neuronal synchronization and generation of populational bursting. Gap junctional connections found between functionally-related Shox2 interneurons decrease with age, possibly being replaced by increasing interactions through chemical synapses. Here, we developed a computational model of a heterogeneous population of neurons sparsely connected by electrical or/and chemical synapses and investigated the dependence of frequency of populational bursting on the type and strength of neuronal interconnections. The model proposes a mechanistic explanation that can account for the emergence of a synchronized rhythmic activity in the neuronal population and provides insights into the possible role of gap junctional coupling between Shox2 neurons in the spinal mechanisms for locomotor rhythm generation.


Subject(s)
Locomotion/physiology , Neural Networks, Computer , Spinal Cord/physiology , Synapses/physiology , Animals , Interneurons/physiology , Motor Activity/physiology , Motor Neurons/physiology , Nerve Net/physiology
9.
Front Cell Neurosci ; 13: 452, 2019.
Article in English | MEDLINE | ID: mdl-31649510

ABSTRACT

Central pattern generators (CPGs) in the thoracolumbar spinal cord generate the basic hindlimb locomotor pattern. The locomotor CPG integrates descending commands and sensory information from the periphery to activate, modulate and halt the rhythmic program. General CPG function and response to sensory perturbations are well described in cat and rat models. In mouse, roles for many genetically identified spinal interneurons have been inferred from locomotor alterations following population deletion or modulation. However, the organization of afferent input to specific genetically identified populations of spinal CPG interneurons in mouse remains comparatively less resolved. Here, we focused on a population of CPG neurons marked by the transcription factor Shox2. To directly test integration of afferent signaling by Shox2 neurons, sensory afferents were stimulated during patch clamp recordings of Shox2 neurons in isolated spinal cord preparations from neonatal mice. Shox2 neurons broadly displayed afferent-evoked currents at multiple segmental levels, particularly from caudal dorsal roots innervating distal hindlimb joints. As dorsal root stimulation may activate both flexor- and extensor-related afferents, preparations preserving peripheral nerves were used to provide more specific activation of ankle afferents. We found that both flexor- and extensor-related afferent stimulation were likely to evoke similar currents in a given Shox2 neuron, as assessed by response polarity, latency, duration and amplitude. It has been proposed that Shox2 neurons can be divided into neurons which contribute to rhythm generation and neurons that are premotor by the absence and presence of the V2a marker Chx10, respectively. Response to afferent stimulation did not differ based on Chx10 expression. Although currents evoked in response to flexor and extensor afferent activation did not follow expected functional antagonism, they were consistent with the observation that stimulation of flexor- and extensor-related afferents both reset the phase of ongoing fictive locomotion to flexion in neonatal mice. Together, the data suggest that Shox2 neurons are interposed in multiple sensory pathways and low threshold proprioceptive input reinforces sensory perturbation of ongoing locomotion by similarly activating or inhibiting both the rhythm and patterning layers of the CPG.

10.
Curr Opin Physiol ; 8: 84-93, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31179403

ABSTRACT

To initiate and support locomotion, rhythm generating neurons in the spinal central pattern generator convert descending input into a rhythmic signal which is conveyed to downstream neurons, leading to the recruitment of motor neurons and activation of muscles. Although two genetically-defined neuronal populations have been linked to rhythm generation, a single all-inclusive rhythm generating population has yet to be identified. Here, we consolidate recent work aimed at identifying rhythm generating neurons, summarize the evidence for the involvement of two neuronal populations in rhythm generation, describe the challenges in identifying a marker for rhythm generating neurons, and discuss potential directions to take in integrating spinal rhythm generating neurons into recently identified speed-dependent locomotor circuits.

11.
Trends Neurosci ; 41(9): 625-639, 2018 09.
Article in English | MEDLINE | ID: mdl-30017476

ABSTRACT

The central nervous system is not a static, hard-wired organ. Examples of neuroplasticity, whether at the level of the synapse, the cell, or within and between circuits, can be found during development, throughout the progression of disease, or after injury. One essential component of the molecular, anatomical, and functional changes associated with neuroplasticity is the spinal interneuron (SpIN). Here, we draw on recent multidisciplinary studies to identify and interrogate subsets of SpINs and their roles in locomotor and respiratory circuits. We highlight some of the recent progress that elucidates the importance of SpINs in circuits affected by spinal cord injury (SCI), especially those within respiratory networks; we also discuss potential ways that spinal neuroplasticity can be therapeutically harnessed for recovery.


Subject(s)
Interneurons/physiology , Neuronal Plasticity/physiology , Respiratory System/innervation , Spinal Cord Injuries/physiopathology , Spinal Cord/physiology , Animals , Humans , Interneurons/transplantation , Spinal Cord Injuries/rehabilitation , Spinal Cord Injuries/surgery , Spinal Cord Injuries/therapy , Transplantation/methods
12.
Elife ; 72018 12 31.
Article in English | MEDLINE | ID: mdl-30596374

ABSTRACT

Neuronal networks generating hindlimb locomotion are located in the spinal cord. The mechanisms underlying spinal rhythmogenesis are unknown but network activity and interconnectivity of excitatory interneurons likely play prominent roles. Here, we investigate interconnectivity within the Shox2 interneuron population, a subset of which has been suggested to be involved in locomotor rhythm generation, using paired recordings in isolated spinal cords or slices from transgenic mice. Sparse unidirectional connections consistent with chemical synaptic transmission and prominent bidirectional connections mediated by electrical synapses were present within distinct subsets of Shox2 interneurons. Moreover, bidirectional electrical connections were preferentially found between functionally-related Shox2 interneurons. Though prevalent in neonatal mice, electrical coupling began to decline in incidence and strength in mice ~ 3 weeks of age. Overall, our data suggest that gap junctional coupling promotes synchronization of Shox2 interneurons, and may be implicated in locomotor rhythmicity in developing mice.


Subject(s)
Homeodomain Proteins/metabolism , Interneurons/metabolism , Nerve Net/metabolism , Aging/metabolism , Animals , Animals, Newborn , Electrophysiological Phenomena , Gap Junctions , Mice , Spinal Cord/metabolism , Synapses/metabolism
13.
J Neurosci ; 37(45): 10835-10841, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118212

ABSTRACT

Locomotion is common to all animals and is essential for survival. Neural circuits located in the spinal cord have been shown to be necessary and sufficient for the generation and control of the basic locomotor rhythm by activating muscles on either side of the body in a specific sequence. Activity in these neural circuits determines the speed, gait pattern, and direction of movement, so the specific locomotor pattern generated relies on the diversity of the neurons within spinal locomotor circuits. Here, we review findings demonstrating that developmental genetics can be used to identify populations of neurons that comprise these circuits and focus on recent work indicating that many of these populations can be further subdivided into distinct subtypes, with each likely to play complementary functions during locomotion. Finally, we discuss data describing the manner in which these populations interact with each other to produce efficient, task-dependent locomotion.


Subject(s)
Interneurons/physiology , Locomotion/physiology , Nerve Net/anatomy & histology , Nerve Net/physiology , Spinal Cord/cytology , Spinal Cord/physiology , Animals , Humans , Motor Neurons/physiology , Nerve Net/diagnostic imaging , Nerve Net/growth & development , Spinal Cord/diagnostic imaging , Spinal Cord/growth & development
14.
J Neurotrauma ; 34(21): 3058-3065, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28548606

ABSTRACT

More than half of all spinal cord injuries (SCIs) occur at the cervical level, often resulting in impaired respiration. Despite this devastating outcome, there is substantial evidence for endogenous neuroplasticity after cervical SCI. Spinal interneurons are widely recognized as being an essential anatomical component of this plasticity by contributing to novel neuronal pathways that can result in functional improvement. The identity of spinal interneurons involved with respiratory plasticity post-SCI, however, has remained largely unknown. Using a transgenic Chx10-eGFP mouse line (Strain 011391-UCD), the present study is the first to demonstrate the recruitment of excitatory interneurons into injured phrenic circuitry after a high cervical SCI. Diaphragm electromyography and anatomical analysis were used to confirm lesion-induced functional deficits and document extent of the lesion, respectively. Transneuronal tracing with pseudorabies virus (PRV) was used to identify interneurons within the phrenic circuitry. There was a robust increase in the number of PRV-labeled V2a interneurons ipsilateral to the C2 hemisection, demonstrating that significant numbers of these excitatory spinal interneurons were anatomically recruited into the phrenic motor pathway two weeks after injury, a time known to correspond with functional phrenic plasticity. Understanding this anatomical spinal plasticity and the neural substrates associated with functional compensation or recovery post-SCI in a controlled, experimental setting may help shed light onto possible cellular therapeutic candidates that can be targeted to enhance spontaneous recovery.


Subject(s)
Diaphragm/innervation , Interneurons/cytology , Neuronal Plasticity/physiology , Phrenic Nerve/cytology , Spinal Cord Injuries/physiopathology , Animals , Cervical Vertebrae , Interneurons/physiology , Mice , Mice, Transgenic , Phrenic Nerve/physiology , Recovery of Function/physiology
15.
Sci Rep ; 7: 41369, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128321

ABSTRACT

Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.


Subject(s)
Homeodomain Proteins/metabolism , Integrases/metabolism , Interneurons/metabolism , Motor Activity/physiology , Spinal Cord/metabolism , Transcription Factors/metabolism , Animals , Evoked Potentials , Gene Silencing , Glutamates/metabolism , Lumbar Vertebrae/metabolism , Mice , Mice, Transgenic , Motor Neurons/metabolism , Synapses/metabolism , Synaptic Transmission , Vesicular Glutamate Transport Protein 2/metabolism
16.
eNeuro ; 2(5)2015 Sep.
Article in English | MEDLINE | ID: mdl-26478909

ABSTRACT

The organization of neural circuits that form the locomotor central pattern generator (CPG) and provide flexor-extensor and left-right coordination of neuronal activity remains largely unknown. However, significant progress has been made in the molecular/genetic identification of several types of spinal interneurons, including V0 (V0D and V0V subtypes), V1, V2a, V2b, V3, and Shox2, among others. The possible functional roles of these interneurons can be suggested from changes in the locomotor pattern generated in mutant mice lacking particular neuron types. Computational modeling of spinal circuits may complement these studies by bringing together data from different experimental studies and proposing the possible connectivity of these interneurons that may define rhythm generation, flexor-extensor interactions on each side of the cord, and commissural interactions between left and right circuits. This review focuses on the analysis of potential architectures of spinal circuits that can reproduce recent results and suggest common explanations for a series of experimental data on genetically identified spinal interneurons, including the consequences of their genetic ablation, and provides important insights into the organization of the spinal CPG and neural control of locomotion.

17.
Curr Opin Neurobiol ; 33: 63-70, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25820136

ABSTRACT

Vertebrate locomotion is executed by networks of neurons within the spinal cord. Here, we describe recent advances in our understanding of spinal locomotor control provided by work using optical and genetic approaches in mice and zebrafish. In particular, we highlight common observations that demonstrate simplification of limb and axial motor pool coordination by spinal network modularity, differences in the deployment of spinal modules at increasing speeds of locomotion, and functional hierarchies in the regulation of locomotor rhythm and pattern. We also discuss the promise of intersectional genetic strategies for better resolution of network components and connectivity, which should help us continue to close the gap between theory and function.


Subject(s)
Locomotion/physiology , Motor Neurons/physiology , Spinal Cord/anatomy & histology , Spinal Cord/physiology , Animals , Extremities/physiology , Humans , Models, Biological , Nerve Net/physiology
18.
Neuron ; 80(4): 920-33, 2013 Nov 20.
Article in English | MEDLINE | ID: mdl-24267650

ABSTRACT

Locomotion is controlled by spinal networks that generate rhythm and coordinate left-right and flexor-extensor patterning. Defined populations of spinal interneurons have been linked to patterning circuits; however, neurons comprising the rhythm-generating kernel have remained elusive. Here, we identify an ipsilaterally projecting excitatory interneuron population, marked by the expression of Shox2 that overlaps partially with V2a interneurons. Optogenetic silencing or blocking synaptic output of Shox2 interneurons (INs) in transgenic mice perturbed rhythm without an effect on pattern generation, whereas ablation of the Shox2 IN subset coinciding with the V2a population was without effect. Most Shox2 INs are rhythmically active during locomotion and analysis of synaptic connectivity showed that Shox2 INs contact other Shox2 INs, commissural neurons, and motor neurons, with preference for flexor motor neurons. Our findings focus attention on a subset of Shox2 INs that appear to participate in the rhythm-generating kernel for spinal locomotion.


Subject(s)
Homeodomain Proteins/physiology , Interneurons/physiology , Locomotion/physiology , Animals , Axons/physiology , Dependovirus/genetics , Electrophysiological Phenomena , Excitatory Amino Acid Agonists/pharmacology , Gene Silencing , Glutamic Acid/physiology , Immunohistochemistry , In Situ Hybridization , Locomotion/drug effects , Male , Mice , Motor Neurons/physiology , N-Methylaspartate/pharmacology , Neural Pathways/physiology , Optogenetics , Serotonin/pharmacology , Spinal Cord/cytology , Spinal Cord/physiology , Vesicular Glutamate Transport Protein 2/physiology
19.
Proc Natl Acad Sci U S A ; 110(28): 11589-94, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23798384

ABSTRACT

Neural networks in the spinal cord known as central pattern generators produce the sequential activation of muscles needed for locomotion. The overall locomotor network architectures in limbed vertebrates have been much debated, and no consensus exists as to how they are structured. Here, we use optogenetics to dissect the excitatory and inhibitory neuronal populations and probe the organization of the mammalian central pattern generator. We find that locomotor-like rhythmic bursting can be induced unilaterally or independently in flexor or extensor networks. Furthermore, we show that individual flexor motor neuron pools can be recruited into bursting without any activity in other nearby flexor motor neuron pools. Our experiments differentiate among several proposed models for rhythm generation in the vertebrates and show that the basic structure underlying the locomotor network has a distributed organization with many intrinsically rhythmogenic modules.


Subject(s)
Locomotion , Nerve Net , Animals , Light , Mice , Mice, Transgenic , Spinal Cord/physiology
20.
Neuron ; 71(6): 1071-84, 2011 Sep 22.
Article in English | MEDLINE | ID: mdl-21943604

ABSTRACT

Neural networks in the spinal cord control two basic features of locomotor movements: rhythm generation and pattern generation. Rhythm generation is generally considered to be dependent on glutamatergic excitatory neurons. Pattern generation involves neural circuits controlling left-right alternation, which has been described in great detail, and flexor-extensor alternation, which remains poorly understood. Here, we use a mouse model in which glutamatergic neurotransmission has been ablated in the locomotor region of the spinal cord. The isolated in vitro spinal cord from these mice produces locomotor-like activity-when stimulated with neuroactive substances-with prominent flexor-extensor alternation. Under these conditions, unlike in control mice, networks of inhibitory interneurons generate the rhythmic activity. In the absence of glutamatergic synaptic transmission, the flexor-extensor alternation appears to be generated by Ia inhibitory interneurons, which mediate reciprocal inhibition from muscle proprioceptors to antagonist motor neurons. Our study defines a minimal inhibitory network that is needed to produce flexor-extensor alternation during locomotion.


Subject(s)
Motor Activity/physiology , Motor Neurons/physiology , Muscle Contraction/physiology , Nerve Net/anatomy & histology , Nerve Net/physiology , Periodicity , Spinal Cord/physiology , Action Potentials/physiology , Animals , GABA Antagonists/pharmacology , Glutamic Acid/metabolism , Glycine/metabolism , Glycine Agents/pharmacology , Interneurons/physiology , Mice , Mice, Knockout , Motor Neurons/drug effects , Muscle, Skeletal/innervation , Muscle, Skeletal/physiology , Picrotoxin/pharmacology , Receptors, GABA-A/metabolism , Receptors, Glycine/metabolism , Spinal Cord/cytology , Strychnine/pharmacology , Synaptic Transmission/drug effects , Synaptic Transmission/physiology , Vesicular Glutamate Transport Protein 2/genetics , Vesicular Glutamate Transport Protein 2/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...