Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Cell Metab ; 35(9): 1613-1629.e8, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37572666

ABSTRACT

Hypothalamic gliosis associated with high-fat diet (HFD) feeding increases susceptibility to hyperphagia and weight gain. However, the body-weight-independent contribution of microglia to glucose regulation has not been determined. Here, we show that reducing microglial nuclear factor κB (NF-κB) signaling via cell-specific IKKß deletion exacerbates HFD-induced glucose intolerance despite reducing body weight and adiposity. Conversely, two genetic approaches to increase microglial pro-inflammatory signaling (deletion of an NF-κB pathway inhibitor and chemogenetic activation through a modified Gq-coupled muscarinic receptor) improved glucose tolerance independently of diet in both lean and obese rodents. Microglial regulation of glucose homeostasis involves a tumor necrosis factor alpha (TNF-α)-dependent mechanism that increases activation of pro-opiomelanocortin (POMC) and other hypothalamic glucose-sensing neurons, ultimately leading to a marked amplification of first-phase insulin secretion via a parasympathetic pathway. Overall, these data indicate that microglia regulate glucose homeostasis in a body-weight-independent manner, an unexpected mechanism that limits the deterioration of glucose tolerance associated with obesity.


Subject(s)
Microglia , NF-kappa B , Humans , Microglia/metabolism , NF-kappa B/metabolism , Obesity/metabolism , Body Weight/physiology , Glucose/metabolism , Hypothalamus/metabolism , Diet, High-Fat
2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742824

ABSTRACT

Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.


Subject(s)
Diet, High-Fat , Melanocortins , Animals , Chemokine CX3CL1/genetics , Chemokine CX3CL1/metabolism , Hypothalamus/metabolism , Leptin/metabolism , Melanocortins/metabolism , Mice , Mice, Inbred C57BL , Microglia/metabolism , Minocycline/pharmacology , Neurons/metabolism , Obesity/metabolism , Pro-Opiomelanocortin/genetics , Pro-Opiomelanocortin/metabolism
5.
Cell Metab ; 26(1): 185-197.e3, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28683286

ABSTRACT

Dietary excess triggers accumulation of pro-inflammatory microglia in the mediobasal hypothalamus (MBH), but the components of this microgliosis and its metabolic consequences remain uncertain. Here, we show that microglial inflammatory signaling determines the immunologic response of the MBH to dietary excess and regulates hypothalamic control of energy homeostasis in mice. Either pharmacologically depleting microglia or selectively restraining microglial NF-κB-dependent signaling sharply reduced microgliosis, an effect that includes prevention of MBH entry by bone-marrow-derived myeloid cells, and greatly limited diet-induced hyperphagia and weight gain. Conversely, forcing microglial activation through cell-specific deletion of the negative NF-κB regulator A20 induced spontaneous MBH microgliosis and cellular infiltration, reduced energy expenditure, and increased both food intake and weight gain even in absence of a dietary challenge. Thus, microglial inflammatory activation, stimulated by dietary excess, orchestrates a multicellular hypothalamic response that mediates obesity susceptibility, providing a mechanistic rationale for non-neuronal approaches to treat metabolic diseases.


Subject(s)
Appetite Regulation , Energy Metabolism , Hypothalamus/immunology , Inflammation/immunology , Microglia/immunology , Obesity/immunology , Animals , Hyperphagia/immunology , Hyperphagia/metabolism , Hyperphagia/physiopathology , Hypothalamus/metabolism , Hypothalamus/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Microglia/pathology , Myeloid Cells/immunology , Myeloid Cells/metabolism , Myeloid Cells/pathology , NF-kappa B/immunology , NF-kappa B/metabolism , Obesity/metabolism , Obesity/physiopathology , Signal Transduction
6.
Nat Commun ; 8: 14556, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28223698

ABSTRACT

Female mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression. Female Cx3cr1 knockout mice develop 'male-like' hypothalamic microglial accumulation and activation, accompanied by a marked increase in their susceptibility to diet-induced obesity. Conversely, increasing brain CX3CL1 levels in male mice through central pharmacological administration or virally mediated hypothalamic overexpression converts them to a 'female-like' metabolic phenotype with reduced microglial activation and body-weight gain. These data implicate sex differences in microglial activation in the modulation of energy homeostasis and identify CX3CR1 signalling as a potential therapeutic target for the treatment of obesity.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Microglia/metabolism , Microglia/pathology , Obesity/metabolism , Obesity/pathology , Sex Characteristics , Signal Transduction , Animals , CX3C Chemokine Receptor 1/deficiency , Calcium-Binding Proteins/metabolism , Diet, High-Fat , Disease Susceptibility , Estrogens/pharmacology , Feeding Behavior/drug effects , Female , Hypothalamus/pathology , Inflammation/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/metabolism , Microglia/drug effects , Phenotype , Weight Gain
7.
Diabetologia ; 60(2): 226-236, 2017 02.
Article in English | MEDLINE | ID: mdl-27986987

ABSTRACT

Body weight stability requires homeostatic regulation to balance energy intake and energy expenditure. Research on this system and how it is affected by obesity has largely focused on the role of hypothalamic neurons as integrators of information about long-term fuel storage, short-term nutrient availability and metabolic demand. Recent studies have uncovered glial cells as additional contributors to energy balance regulation and obesity pathogenesis. Beginning with early work on leptin signalling in astrocytes, this area of research rapidly emerged after the discovery of hypothalamic inflammation and gliosis in obese rodents and humans. Current studies have revealed the involvement of a wide variety of glial cell types in the modulation of neuronal activity, regulation of hormone and nutrient availability, and participation in the physiological regulation of feeding behaviour. In addition, one glial type, microglia, has recently been implicated in susceptibility to diet-induced obesity. Together, these exciting new findings deepen our understanding of energy homeostasis regulation and raise the possibility of identifying novel mechanisms that contribute to the pathogenesis of obesity.


Subject(s)
Homeostasis/physiology , Neuroglia/metabolism , Obesity/metabolism , Animals , Body Weight/genetics , Body Weight/physiology , Central Nervous System/metabolism , Homeostasis/genetics , Humans , Hypothalamus/metabolism , Obesity/genetics
8.
J Lipid Res ; 56(6): 1153-71, 2015 06.
Article in English | MEDLINE | ID: mdl-25842377

ABSTRACT

Monoacylglycerol lipase (MGL) is a ubiquitously expressed enzyme that catalyzes the hydrolysis of monoacylglycerols (MGs) to yield FFAs and glycerol. MGL contributes to energy homeostasis through the mobilization of fat stores and also via the degradation of the endocannabinoid 2-arachidonoyl glycerol. To further examine the role of MG metabolism in energy homeostasis, MGL(-/-) mice were fed either a 10% (kilocalories) low-fat diet (LFD) or a 45% (kilocalories) high-fat diet (HFD) for 12 weeks. Profound increases of MG species in the MGL(-/-) mice compared with WT control mice were found. Weight gain over the 12 weeks was blunted in both diet groups. MGL(-/-) mice were leaner than WT mice at both baseline and after 12 weeks of LFD feeding. Circulating lipids were decreased in HFD-fed MGL(-/-) mice, as were the levels of several plasma peptides involved in glucose homeostasis and energy balance. Interestingly, MGL(-/-) mice had markedly reduced intestinal TG secretion following an oral fat challenge, suggesting delayed lipid absorption. Overall, the results indicate that global MGL deletion leads to systemic changes that produce a leaner phenotype and an improved serum metabolic profile.


Subject(s)
Dietary Fats/blood , Energy Metabolism/genetics , Monoacylglycerol Lipases/blood , Obesity/blood , Weight Gain/genetics , Animals , Diet, High-Fat , Endocannabinoids/blood , Homeostasis , Lipids/blood , Mice , Mice, Knockout , Monoacylglycerol Lipases/genetics , Monoglycerides/blood , Obesity/genetics , Obesity/pathology
9.
J Nutr ; 143(3): 295-301, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23325921

ABSTRACT

The (n-3) PUFAs 20:5 (n-3) (EPA) and 22:6 (n-3) (DHA) are thought to benefit human health. The presence of prooxidant compounds in foods, however, renders them susceptible to oxidation during both storage and digestion. The development of oxidation products during digestion and the potential effects on intestinal PUFA uptake are incompletely understood. In the present studies, we examined: (1) the development and bioaccessibility of lipid oxidation products in the gastrointestinal lumen during active digestion of fatty fish using the in vitro digestive tract TNO Intestinal Model-1 (TIM-1); (2) the mucosal cell uptake and metabolism of oxidized compared with unoxidized PUFAs using Caco-2 intestinal cells; and 3) the potential to limit the development of oxidation products in the intestine by incorporating antioxidant polyphenols in food. We found that during digestion, the development of oxidation products occurs in the stomach compartment, and increased amounts of oxidation products became bioaccessible in the jejunal and ileal compartments. Inclusion of a polyphenol-rich grape seed extract (GSE) during the digestion decreased the amounts of oxidation products in the stomach compartment and intestinal dialysates (P < 0.05). In Caco-2 intestinal cells, the uptake of oxidized (n-3) PUFAs was ~10% of the uptake of unoxidized PUFAs (P < 0.05) and addition of GSE or epigallocatechin gallate protected against the development of oxidation products, resulting in increased uptake of PUFAs (P < 0.05). These results suggest that addition of polyphenols during active digestion can limit the development of (n-3) PUFA oxidation products in the small intestine lumen and thereby promote intestinal uptake of the beneficial, unoxidized, (n-3) PUFAs.


Subject(s)
Antioxidants/pharmacology , Diet , Fatty Acids, Unsaturated/metabolism , Grape Seed Extract/pharmacology , Lipid Peroxidation/drug effects , Polyphenols/pharmacology , Vitis/chemistry , Animals , Biological Availability , Caco-2 Cells , Catechin/analogs & derivatives , Catechin/pharmacology , Dietary Fats/metabolism , Fishes , Food Storage , Gastric Mucosa/metabolism , Humans , Ileum/drug effects , Ileum/metabolism , Intestinal Mucosa/cytology , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Jejunum/drug effects , Jejunum/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Seafood , Stomach/drug effects
10.
PLoS One ; 7(8): e43962, 2012.
Article in English | MEDLINE | ID: mdl-22937137

ABSTRACT

The function of small intestinal monoacylglycerol lipase (MGL) is unknown. Its expression in this tissue is surprising because one of the primary functions of the small intestine is to convert diet-derived MGs to triacylglycerol (TG), and not to degrade them. To elucidate the function of intestinal MGL, we generated transgenic mice that over-express MGL specifically in small intestine (iMGL mice). After only 3 weeks of high fat feeding, iMGL mice showed an obese phenotype; body weight gain and body fat mass were markedly higher in iMGL mice, along with increased hepatic and plasma TG levels compared to wild type littermates. The iMGL mice were hyperphagic and displayed reduced energy expenditure despite unchanged lean body mass, suggesting that the increased adiposity was due to both increased caloric intake and systemic effects resulting in a hypometabolic rate. The presence of the transgene resulted in lower levels of most MG species in intestinal mucosa, including the endocannabinoid 2-arachidonoyl glycerol (2-AG). The results therefore suggest a role for intestinal MGL, and intestinal 2-AG and perhaps other MG species, in whole body energy balance via regulation of food intake as well as metabolic rate.


Subject(s)
Arachidonic Acids/metabolism , Endocannabinoids/metabolism , Energy Metabolism/physiology , Glycerides/metabolism , Intestine, Small/metabolism , Monoacylglycerol Lipases/genetics , Obesity/metabolism , Adiposity/physiology , Agouti-Related Protein/metabolism , Animals , Appetite/physiology , Basal Metabolism/physiology , Brain/metabolism , Eating/physiology , Mice , Mice, Transgenic , Monoacylglycerol Lipases/metabolism , Neuropeptide Y/metabolism , Obesity/genetics , Polyunsaturated Alkamides/metabolism , Pro-Opiomelanocortin/metabolism , Receptor, Cannabinoid, CB1/metabolism , Triglycerides/metabolism
11.
Front Physiol ; 3: 25, 2012.
Article in English | MEDLINE | ID: mdl-22375121

ABSTRACT

The ectopic deposition of fat in liver and muscle during obesity is well established, however surprisingly little is known about the intestine. We used the ob/ob mouse and C57BL6/J mice fed a high fat (HF) diet to examine the effects of obesity and the effects of HF feeding, respectively, on intestinal mucosal triacylglycerol (TG) accumulation. Male C57BL6/J (wild-type, WT) mice were fed low fat (LF; 10% kcal as fat) or HF (45%) diets, and ob/ob mice were fed the LF diet, for 3 weeks. In this time frame, the WT-HF mice did not become obese, enabling independent examination of effects of the HF diet and effects of obesity. Analysis of intestinal lipid extracts from fed and fasted animals demonstrated that the mucosa, like other tissues, accumulates excess lipid. In the fed state, mucosal triacylglycerol (TG) levels were threefold and fivefold higher in the WT-HF and ob/ob mice, respectively, relative to the WT-LF mice. In the fasted state, mucosa from ob/ob mice had threefold higher TG levels relative to WT-LF mucosa. q-PCR analysis of mucosal mRNA from fed state mice showed alterations in the expression of several genes related to both anabolic and catabolic lipid metabolism pathways in WT-HF and ob/ob mice relative to WT-LF controls. Fewer changes were found in mucosal samples from the fasted state animals. Remarkably, oral fat tolerance tests showed a striking reduction in the plasma appearance of an oral fat load in the ob/ob and WT-HF mice compared to WT-LF. Overall, the results demonstrate that the intestinal mucosa accumulates excess TG during obesity. Changes in the expression of lipid metabolic and transport genes, as well as reduced secretion of dietary lipid from the mucosal cells into the circulation, may contribute to the TG accumulation in intestinal mucosa during obesity. Moreover, even in the absence of frank obesity, HF feeding leads to a large decrease in the rate of intestinal lipid secretion.

SELECTION OF CITATIONS
SEARCH DETAIL
...