Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 4002, 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37414824

ABSTRACT

The ability to deliver electrons is vital for dye-based photocatalysts. Conventionally, the aromatic stacking-based charge-transfer complex increases photogenerated electron accessibility but decreases the energy of excited-state dyes. To circumvent this dilemma, here we show a strategy by tuning the stacking mode of dyes. By decorating naphthalene diimide with S-bearing branches, the S···S contact-linked naphthalene diimide string is created in coordination polymer, thereby enhancing electron mobility while simultaneously preserving competent excited-state reducing power. This benefit, along with in situ assembly between naphthalene diimide strings and exogenous reagent/reactant, improves the accessibility of short-lived excited states during consecutive photon excitation, resulting in greater efficiency in photoinduced electron-transfer activation of inert bonds in comparison to other coordination polymers with different dye-stacking modes. This heterogeneous approach is successfully applied in the photoreduction of inert aryl halides and the successive formation of CAr-C/S/P/B bonds with potential pharmaceutical applications.


Subject(s)
Chalcogens , Inorganic Chemicals , Polymers/chemistry , Electron Transport , Naphthalenes/chemistry
2.
Molecules ; 28(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298848

ABSTRACT

Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.


Subject(s)
Technology , Electron Transport , Physical Phenomena
3.
Angew Chem Int Ed Engl ; 60(33): 17832-17852, 2021 Aug 09.
Article in English | MEDLINE | ID: mdl-33533165

ABSTRACT

Fuel cells are an incredibly powerful renewable energy technology, but their broad applications remains lagging because of the high cost and poor reliability of cathodic electrocatalysts for the oxygen reduction reaction (ORR). This review focuses on the recent progress of ORR electrocatalysts in fuel cells. More importantly, it highlights the fundamental problems associated with the insufficient activity translation from rotating disk electrode to membrane electrode assembly in the fuel cells. Finally, for the atomic-level in-depth information on ORR catalysts in fuel cells, potential perspectives are suggested, including large-scale preparation, unified assessment criteria, advanced interpretation techniques, advanced simulation and artificial intelligence. This review aims to provide valuable insights into the fundamental science and technical engineering for efficient ORR electrocatalysts in fuel cells.

4.
Sci Bull (Beijing) ; 66(21): 2207-2216, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-36654112

ABSTRACT

Developing efficient platinum (Pt)-based electrocatalysts is enormously significant for fuel cells. Herein, we report an integrated electrocatalyst of ultralow-Pt alloy encapsulated into nitrogen-doped nanocarbon architecture for efficient oxygen reduction reaction. This hybrid Pt-based catalyst achieves a mass activity of 3.46 A mgpt-1 at the potential of 0.9 V vs. RHE with a negligible stability decay after 10,000 cycles. More importantly, this half-cell activity can be expressed at full cell level with a high Pt utilization of 10.22 W mgPt-1cathode and remarkable durability after 30,000 cycles in single-cell. Experimental and theoretical investigations reveal that a highly strained Pt structure with an optimal Pt-O binding energy is induced by the incorporation of Co/Ni into Pt lattice, which would account for the improved reaction kinetics. The synergistic catalysis due to nitrogen-doped nanocarbon architecture and active Pt component is responsible for the enhanced catalytic activity. Meanwhile, the strong metal-support interaction and optimized hydrophilic properties of nanocarbon matrix facilitate efficient mass transport and water management. This work may provide significant insights in designing the low-Pt integrated electrocatalysts for fuel cells and beyond.

5.
Adv Mater ; 32(28): e2002170, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32484260

ABSTRACT

Nanostructures derived from zeolitic-imidazole frameworks (ZIFs) gain much interest in bifunctional oxygen electrocatalysis. However, they are not satisfied well for long-life rechargeable zinc-air batteries due to the limited single particle morphology. Herein, the preparation of an interconnected macroporous carbon matrix with a well-defined 3D architecture by the pyrolysis of silica templated ZIF-67 assemblies is reported. The matrix catalyst assembled zinc-air battery exhibits a high power density of 221.1 mW cm-2 as well as excellent stability during 500 discharging/charging cycles, surpassing that of a commercial Pt/C assembled battery. The synergistic effect from the interconnected macroporous structure together with abundant cobalt-nitrogen-carbon active sites justify the excellent electrocatalytic activity and battery performance. Considering the advanced nanostructures and performance, the as-synthesized hybrid would be promising for rechargeable zinc-air batteries and other energy technologies. This work may also provide significant concept in the view of electrocatalysis design for long-life battery.

SELECTION OF CITATIONS
SEARCH DETAIL
...