Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 7(11)2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31671797

ABSTRACT

Aeromonas veronii is an emerging pathogen causing severe pathology and mortalities in European seabass aquaculture in the Aegean Sea, Mediterranean. More than 50 strains of the pathogen were characterized biochemically and genetically in order to study the epidemiology of the disease, as well as the phylogeny and virulence of the bacterium. Based on the phenotypic characteristics, the isolates form three groups consisting of: (a) the West Aegean Sea, non-motile, non-pigment-producing strains, (b) the West Aegean Sea, motile, and pigment-producing strains and (c) the East Aegean Sea motile strains that produce minute amounts of pigment. All strains were highly similar at the genomic level; however, the pattern of West/East geographic origin was reflected in biochemical properties, in general genomic level comparison and in the putative virulent factors studied. Type VI secretion system was not detected in the western strains. The outer membrane protein (OMP) profile which contains proteins that are putative antigenic factors, was very similar between strains from the different areas. Although most of the OMPs were detected in all strains with great sequence similarity, diversification according to geographic origin was evident in known antigenic factors such as the maltoporin LamB. A systematic comparative analysis of the strains is presented and discussed in view of the emergence of A. veronii as a significant pathogen for the Mediterranean aquaculture.

2.
Front Microbiol ; 8: 508, 2017.
Article in English | MEDLINE | ID: mdl-28424665

ABSTRACT

The Planctomycetes-Verrucomicrobia-Chlamydiae (PVC) bacterial superphylum constitutes a broad range of organisms with an intriguing array of ultrastructural morphologies, including intracellular membranes and compartments and their corresponding complex genomes encoding these forms. The phylum Chlamydiae are all obligate intracellular bacteria and, although much is already known of their genomes from various families and how these regulate the various morphological forms, we know remarkably little about what is likely the deepest rooting clade of this phylum, which has only been found to contain pathogens of marine and fresh water vertebrates. The disease they are associated with is called epitheliocystis; however, analyses of the causative agents is hindered by an inability to cultivate them for refined in vitro experimentation. For this reason, we have developed tools to analyse both the genomes and the ultrastructures of bacteria causing this disease, directly from infected tissues. Here we present structural data for a member of the family Ca. Similichlamydiaceae from this deep-rooted clade, which we have identified using molecular tools, in epitheliocystis lesions of gilthead seabream (Sparus aurata) in Greece. We present evidence that the chlamydial inclusions appear to develop in a perinuclear location, similar to other members of the phylum and that a chlamydial developmental cycle is present, with chlamydial forms similar to reticular bodies (RBs) and elementary bodies (EBs) detected. Division of the RBs appeared to follow a budding process, and larger RBs with multiple condensed nucleoids were detected using both transmission electron microscopy (TEM) and by focused-ion beam, scanning electron microscopy (FIB-SEM). As model hosts, fish offer many advantages for investigation, and we hope by these efforts to encourage others to explore the biology of fish pathogens from the PVC.

3.
ACS Appl Mater Interfaces ; 8(51): 35593-35605, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27976854

ABSTRACT

In the present work, reactive blending of copolymers with complementary functional groups was applied to control their antimicrobial activity and antifouling action in real conditions. For this purpose, two series of copolymers, poly(4-vinylbenzyl chloride-co-acrylic acid), P(VBC-co-AAx), and poly(sodium 4-styrenesulfonate-co-glycidyl methacrylate), P(SSNa-co-GMAx), were synthesized via free radical copolymerization and further modified by the incorporation of biocidal units either covalently (4-vinyl benzyl dimethylhexadecylammonium chloride, VBCHAM) or electrostatically bound (cetyltrimethylammonium 4-styrenesulfonate, SSAmC16). The cross-linking reaction of the carboxylic group of acrylic acid (AA) with the epoxide group of glycidyl methacrylate (GMA) of these two series of reactive antimicrobial copolymers was explored in blends obtained through solution casting after curing at various temperatures. The combined results from the ATR-FTIR characterization of the membranes, solubility tests, turbidimetry, and TEM suggest that the reaction occurs already at 80 °C, leading mostly to graft samples, while at higher curing temperatures (120 or 150 °C) insoluble cross-linked samples are usually obtained. Controlled release experiments of selected membranes were performed in pure water and aqueous 1 M NaCl solutions for a period of two months. The released material was followed through gravimetry and TOC/TN measurements, while the evolution of the integrity and the morphology of the membranes were followed visually and through SEM, respectively. Antimicrobial tests also revealed that the cross-linked membranes presented strong antimicrobial activity against S. aureus and P. aeruginosa. Finally, a specific blend combination was applied on aquaculture nets and cured at 80 °C. The modified nets, emerged in the sea for 15 and 35 days, exhibited high antifouling action as compared to blank nets.


Subject(s)
Ammonium Compounds/chemistry , Anti-Infective Agents , Polymerization , Polymers , Staphylococcus aureus
4.
Syst Appl Microbiol ; 39(3): 180-188, 2016 May.
Article in English | MEDLINE | ID: mdl-26922490

ABSTRACT

Fish-pathogenic Vibrio can cause large-scale crashes in marine larval rearing units and, since the use of antibiotics can result in bacterial antibiotic resistance, new strategies for disease prevention are needed. Roseobacter-clade bacteria from turbot larval rearing facilities can antagonize Vibrio anguillarum and reduce mortality in V. anguillarum-infected cod and turbot larvae. In this study, it was demonstrated that antagonistic Roseobacter-clade bacteria could be isolated from sea bass larval rearing units. In addition, it was shown that they not only antagonized V. anguillarum but also V. harveyi, which is the major bacterial pathogen in crustaceans and Mediterranean sea bass larvae cultures. Concomitantly, they significantly improved survival of V. harveyi-infected brine shrimp. 16S rRNA gene sequence homology identified the antagonists as Phaeobacter sp., and in silico DNA-DNA hybridization indicated that they could belong to a new species. The genomes contained genes involved in synthesis of the antibacterial compound tropodithietic acid (TDA), and its production was confirmed by UHPLC-TOFMS. The new Phaeobacter colonized live feed (Artemia) cultures and reduced Vibrio counts significantly, since they reached only 10(4)CFUmL(-1), as opposed to 10(8)CFUmL(-1) in non-Phaeobacter treated controls. Survival of V. anguillarum-challenged Artemia nauplii was enhanced by the presence of wild type Phaeobacter compared to challenged control cultures (89±1.0% vs 8±3.2%). In conclusion, TDA-producing Phaeobacter isolated from Mediterranean marine larviculture are promising probiotic bacteria against pathogenic Vibrio in crustacean live-feed cultures for marine fish larvae.


Subject(s)
Artemia/microbiology , Bass/microbiology , Fish Diseases/microbiology , Larva/microbiology , Roseobacter/isolation & purification , Tropolone/analogs & derivatives , Vibrio/growth & development , Animals , Antibiosis , Base Sequence , DNA, Bacterial/genetics , Genome, Bacterial/genetics , Mediterranean Sea , Probiotics , RNA, Ribosomal, 16S/genetics , Roseobacter/classification , Roseobacter/genetics , Sequence Analysis, DNA , Tropolone/metabolism
5.
ISME J ; 10(7): 1791-803, 2016 07.
Article in English | MEDLINE | ID: mdl-26849311

ABSTRACT

New and emerging environmental pathogens pose some of the greatest threats to modern aquaculture, a critical source of food protein globally. As with other intensive farming practices, increasing our understanding of the biology of infections is important to improve animal welfare and husbandry. The gill infection epitheliocystis is increasingly problematic in gilthead seabream (Sparus aurata), a major Mediterranean aquaculture species. Epitheliocystis is generally associated with chlamydial bacteria, yet we were not able to localise chlamydial targets within the major gilthead seabream lesions. Two previously unidentified species within a novel ß-proteobacterial genus were instead identified. These co-infecting intracellular bacteria have been characterised using high-resolution imaging and genomics, presenting the most comprehensive study on epitheliocystis agents to date. Draft genomes of the two uncultured species, Ca. Ichthyocystis hellenicum and Ca. Ichthyocystis sparus, have been de novo sequenced and annotated from preserved material. Analysis of the genomes shows a compact core indicating a metabolic dependency on the host, and an accessory genome with an unprecedented number of tandemly arrayed gene families. This study represents a critical insight into novel, emerging fish pathogens and will be used to underpin future investigations into the bacterial origins, and to develop diagnostic and treatment strategies.


Subject(s)
Betaproteobacteria/classification , Genomics , Sea Bream/microbiology , Animals , Aquaculture , Betaproteobacteria/cytology , Betaproteobacteria/genetics , Gills/microbiology , Phylogeny
6.
BMC Vet Res ; 11: 155, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26193880

ABSTRACT

BACKGROUND: Edwardsiella tarda, is a serious bacterial pathogen affecting a broad range of aquaculture fish species. The bacterium has also been reported as a human pathogen, however recent studies have dissociated the fish pathogenic Edwardsiella from those isolated from humans by placing them in a new species, E. piscicida. Here we report the first case of Edwardsiellosis in cultured sharpsnout sea breams, Diplodus puntazzo in Greece. CASE PRESENTATION: The disease has affected cultured sharpsnout sea breams of a commercial fish farm in a single location in East Greece. Two populations of sharpsnout sea breams stocked in two consecutive years in floating cages presented signs of disease which included nodules and abscesses in spleen and kidney, morbidity and cumulative mortality reaching 5.3 %. Using microbiological, biochemical and molecular tools we have identified Edwardsiella sp. as the main aetiological factor of the disease. Following phylogenetic analysis the bacterial isolates are grouped with the newly described Edwardsiella piscicida species. CONCLUSIONS: This is the first report of Edwardsiellosis in this species but most importantly in sea cage-cultured fish in the Mediterranean which may pose a serious threat for aquaculture fish species in this region.


Subject(s)
Edwardsiella tarda/isolation & purification , Enterobacteriaceae Infections/veterinary , Fish Diseases/microbiology , Sea Bream , Animals , Aquaculture , Enterobacteriaceae Infections/epidemiology , Enterobacteriaceae Infections/microbiology , Fish Diseases/epidemiology , Greece/epidemiology , Mediterranean Region
SELECTION OF CITATIONS
SEARCH DETAIL
...