Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 629(8011): 443-449, 2024 May.
Article in English | MEDLINE | ID: mdl-38658754

ABSTRACT

The Werner syndrome RecQ helicase WRN was identified as a synthetic lethal target in cancer cells with microsatellite instability (MSI) by several genetic screens1-6. Despite advances in treatment with immune checkpoint inhibitors7-10, there is an unmet need in the treatment of MSI cancers11-14. Here we report the structural, biochemical, cellular and pharmacological characterization of the clinical-stage WRN helicase inhibitor HRO761, which was identified through an innovative hit-finding and lead-optimization strategy. HRO761 is a potent, selective, allosteric WRN inhibitor that binds at the interface of the D1 and D2 helicase domains, locking WRN in an inactive conformation. Pharmacological inhibition by HRO761 recapitulated the phenotype observed by WRN genetic suppression, leading to DNA damage and inhibition of tumour cell growth selectively in MSI cells in a p53-independent manner. Moreover, HRO761 led to WRN degradation in MSI cells but not in microsatellite-stable cells. Oral treatment with HRO761 resulted in dose-dependent in vivo DNA damage induction and tumour growth inhibition in MSI cell- and patient-derived xenograft models. These findings represent preclinical pharmacological validation of WRN as a therapeutic target in MSI cancers. A clinical trial with HRO761 (NCT05838768) is ongoing to assess the safety, tolerability and preliminary anti-tumour activity in patients with MSI colorectal cancer and other MSI solid tumours.


Subject(s)
Antineoplastic Agents , Drug Discovery , Enzyme Inhibitors , Microsatellite Instability , Neoplasms , Synthetic Lethal Mutations , Werner Syndrome Helicase , Animals , Female , Humans , Mice , Administration, Oral , Allosteric Regulation/drug effects , Antineoplastic Agents/adverse effects , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Clinical Trials as Topic , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , DNA Damage/drug effects , Enzyme Inhibitors/adverse effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Mice, Nude , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism , Protein Domains , Reproducibility of Results , Suppression, Genetic , Synthetic Lethal Mutations/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Werner Syndrome Helicase/antagonists & inhibitors , Werner Syndrome Helicase/genetics , Werner Syndrome Helicase/metabolism , Xenograft Model Antitumor Assays
2.
Appl Microbiol Biotechnol ; 87(3): 1007-21, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20333513

ABSTRACT

The soil deuteromycete Penicillium funiculosum is characterized by its remarkable capacity to produce a wide variety of cellulolytic and hemicellulolytic enzymes. In the course of the genome sequencing of this industrial fungus, four different genes encoding glycosyl hydrolase family 54 (GH54)22 alpha-L-arabinofuranosidases were identified. Three of them termed PfabfB1, PfabfB3, and PfabfB4 were highly similar, encoding proteins of 507, 508, and 505 amino acids, respectively. They exhibited structural features typical of GH54 enzymes, including an N-terminal catalytic domain connected to a C-terminal arabinose-binding domain (ABD). The fourth gene termed PfafbB2 codes for an unusual 400 amino acid length GH54 alpha-L: -arabinofuranosidase, in which the ABD was replaced by a fungal cellulose-binding domain (fCBD). This domain was shown to be functional since it allowed this protein to be retained onto microcrystalline cellulose, and the fusion of this CBD to the C-terminal end of PfAbfB1 allowed this protein to bind to cellulose. Expression analysis of the four PfabfB genes during an industrial-like process fermentation on complex carbohydrates revealed that PfafB2 was expressed more than 20,000-fold, while PfabfB3 and PfabfB4 were increased moderately at the end of the fermentation. In contrast, the transcript levels of PfabfB1 remained unchanged throughout the process. This new type of GH54 alpha-arabinofuranosidase encoded by PfabfB2 showed enzymatic properties slightly different to those of other GH54 enzymes characterized so far, including a higher thermostability, an optimum pH, and temperature of 2.6 and 50 degrees C, instead of 3.5 and 60 degrees C as found for PfAbfB1. Nonetheless, like other GH54 alpha-arabinofuranosidases, PfAbfB2 was able to release arabinose from various sources of branched arabinoxylan and arabinan.


Subject(s)
Cellulose/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Penicillium/enzymology , Amino Acid Sequence , Enzyme Stability , Fungal Proteins/genetics , Glycoside Hydrolases/genetics , Molecular Sequence Data , Penicillium/chemistry , Penicillium/genetics , Protein Binding , Protein Structure, Tertiary , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...